Project description:We performed both transcriptomic and proteomic analyses on gastric cancer cells infected by H. pylori isolates from GML patients and the gastric ulcer strain 26695 to investigate the differentially expressed molecular signatures that were induced by GML isolates. Transcriptomicd analysis revealed fifteen pathways, including the Wnt signaling pathway, the mTOR signaling pathway, the NOD-like receptor signaling pathway and the Hippo signaling pathway, were revealed to be related to GML isolates.
Project description:BackgroundThe correlation between the infection of H. pylori and the occurrence of gastric MALT lymphoma (GML) has been well documented. However, the mechanism of how GML is caused by this bacterium is not well understood, although some immunologic mechanisms are thought to be involved.Materials and methodsIn this study, we performed both transcriptomic and proteomic analyses on gastric cancer cells infected by H. pylori isolates from GML patients and the gastric ulcer strain 26695 to investigate the differentially expressed molecular signatures that were induced by GML isolates.ResultsTranscriptomic analyses revealed that the differentially expressed genes (DEGs) were mainly related to binding, catalytic activity, signal transducer activity, molecular transducer activity, nucleic acid binding transcription factor activity, and molecular function regulator. Fifteen pathways, including the Wnt signaling pathway, the mTOR signaling pathway, the NOD-like receptor signaling pathway and the Hippo signaling pathway, were revealed to be related to GML isolates. Proteomic analyses results showed that there were 116 differentially expressed proteins (DEPs). Most of these DEPs were associated with cancer, and 29 have been used as biomarkers for cancer diagnosis. We also found 63 upstream regulators that can inhibit or activate the expression of the DEPs. Combining the proteomic and transcriptomic analyses revealed 12 common pathways. This study provides novel insights into H. pylori-associated GML. The DEPs we found may be good candidates for GML diagnosis and treatment.ConclusionsThis study revealed specific pathways related to GML and potential biomarkers for GML diagnosis.
Project description:Extranodal marginal zone B-cell lymphoma (MZBL) of the mucosa-associated lymphoid tissue (MALT) is an indolent lymphoma mostly affecting the gastrointestinal tract. In the stomach, MZBL of MALT initially has small cell morphology (SC-MZBL) and arises in the background of Helicobacter pylori induced gastritis. Clonal malignant progression to large cell morphology (LC-MZBL) is observed. During this progression an intermediate stage consisting of both the small cell and large cell morphology is present, called "composite lymphoma". To gain insight into the DNA methylation changes associated with progression of gastric MZBL of MALT, we performed genome-wide DNA methylation profiling using the Illumina Infinium MethylationEPIC BeadChip array for 30 microdissected samples of gastric MZBL of MALT.
Project description:To identify key tumour supressor miRNAs involed in MALT lymphoma pathogenesis Gastric mucosa-associated lymphoid tissue lymphoma develops in the chronically inflamed mucosa of Helicobacter pylori-infected patients. MicroRNA expression profiling of human MALT lymphoma revealed a 10-fold down-regulation of miR-203, which resulted from promoter hypermethylation and coincided with the dysregulation of the miR-203 target ABL1. Demethylating treatment of lymphoma B-cells led to an increase in miR-203 expression and concomitant ABL1 down-regulation. The lentiviral delivery of miR-203, as well as treatment with various ABL inhibitors, prevented primary MALT lymphoma cell proliferation in vitro. Finally, the treatment of tumor-bearing mice with imatinib induced MALT lymphoma regression in vivo. Our results show that MALT lymphomagenesis is epigenetically induced by miR-203 promoter methylation and identify ABL1 as a novel target for the treatment of this malignancy.
Project description:MALT lymphoma is characterized by t(11;18)(q21;q21)/API2-MALT1, t(1;14)(p22;q32)/BCL10-IGH and t(14;18)(q32;q21)/IGH-MALT1, which commonly activate the NF-κB pathway. Gastric MALT lymphomas harboring such translocation do not respond to H. pylori eradication, while those without translocation can be cured by antibiotics. To understand the molecular mechanism of these different MALT lymphoma subgroups, we performed gene expression profiling analysis of 24 MALT lymphomas (15 translocation-positive, 9 translocation-negative). Gene set enrichment analysis (GSEA) of the NF-κB target genes and 4394 additional gene sets covering various cellular pathways, biological processes and molecular functions showed that translocation-positive MALT lymphomas are characterized by an enhanced expression of NF-κB target genes, particularly TLR6, CCR2, CD69 and BCL2, while translocation-negative cases were featured by active inflammatory and immune responses, such as IL8, CD86, CD28 and ICOS.
Project description:To identify key tumour supressor miRNAs involed in MALT lymphoma pathogenesis Gastric mucosa-associated lymphoid tissue lymphoma develops in the chronically inflamed mucosa of Helicobacter pylori-infected patients. MicroRNA expression profiling of human MALT lymphoma revealed a 10-fold down-regulation of miR-203, which resulted from promoter hypermethylation and coincided with the dysregulation of the miR-203 target ABL1. Demethylating treatment of lymphoma B-cells led to an increase in miR-203 expression and concomitant ABL1 down-regulation. The lentiviral delivery of miR-203, as well as treatment with various ABL inhibitors, prevented primary MALT lymphoma cell proliferation in vitro. Finally, the treatment of tumor-bearing mice with imatinib induced MALT lymphoma regression in vivo. Our results show that MALT lymphomagenesis is epigenetically induced by miR-203 promoter methylation and identify ABL1 as a novel target for the treatment of this malignancy. 5 human fresh frozen MALT lymphoma samples were analysed and 4 human tonsil tissue samples were used as the non-tumour control
Project description:Gene Expression changes in BMDCs stimulated with H. pylori vs. E. coli. The hypothesis tested was that the gene expression profile in BMDCs stimulated with H. pylori lysate will be less inflammatory than BMDCs stimulated with E. coli.
Project description:MALT lymphoma is characterized by t(11;18)(q21;q21)/API2-MALT1, t(1;14)(p22;q32)/BCL10-IGH and t(14;18)(q32;q21)/IGH-MALT1, which commonly activate the NF-κB pathway. Gastric MALT lymphomas harboring such translocation do not respond to H. pylori eradication, while those without translocation can be cured by antibiotics. To understand the molecular mechanism of these different MALT lymphoma subgroups, we performed gene expression profiling analysis of 24 MALT lymphomas (15 translocation-positive, 9 translocation-negative). Gene set enrichment analysis (GSEA) of the NF-κB target genes and 4394 additional gene sets covering various cellular pathways, biological processes and molecular functions showed that translocation-positive MALT lymphomas are characterized by an enhanced expression of NF-κB target genes, particularly TLR6, CCR2, CD69 and BCL2, while translocation-negative cases were featured by active inflammatory and immune responses, such as IL8, CD86, CD28 and ICOS. Separate analyses of the genes differentially expressed between translocation-positive and negative cases and measurement of gene ontology term in these differentially expressed genes by hypergeometric test reinforced the above findings by GSEA. Finally, expression of TLR6, in the presence of TLR2, enhanced both API2-MALT1 and BCL10 mediated NF-κB activation in vitro. Our findings provide novel insights into the molecular mechanism of MALT lymphomas with and without translocation, potentially explaining their different clinical behaviors.
Project description:MALT lymphoma is characterized by t(11;18)(q21;q21)/API2-MALT1, t(1;14)(p22;q32)/BCL10-IGH and t(14;18)(q32;q21)/IGH-MALT1, which commonly activate the NF-κB pathway. Gastric MALT lymphomas harboring such translocation do not respond to H. pylori eradication, while those without translocation can be cured by antibiotics. To understand the molecular mechanism of these different MALT lymphoma subgroups, we performed gene expression profiling analysis of 24 MALT lymphomas (15 translocation-positive, 9 translocation-negative). Gene set enrichment analysis (GSEA) of the NF-κB target genes and 4394 additional gene sets covering various cellular pathways, biological processes and molecular functions showed that translocation-positive MALT lymphomas are characterized by an enhanced expression of NF-κB target genes, particularly TLR6, CCR2, CD69 and BCL2, while translocation-negative cases were featured by active inflammatory and immune responses, such as IL8, CD86, CD28 and ICOS. Separate analyses of the genes differentially expressed between translocation-positive and negative cases and measurement of gene ontology term in these differentially expressed genes by hypergeometric test reinforced the above findings by GSEA. Finally, expression of TLR6, in the presence of TLR2, enhanced both API2-MALT1 and BCL10 mediated NF-κB activation in vitro. Our findings provide novel insights into the molecular mechanism of MALT lymphomas with and without translocation, potentially explaining their different clinical behaviors. This study compares MALT with other lymphomas, namely follicular lymphomas (FL) and mantle cell lymphomas (MCL), and investigates the molecular mechanisms of the lymphomagenesis between translocation-positive versus -negative MALT lymphoma cases in order to derive the pathways leading to MALT lymphoma pathogenesis. The study uses fresh frozen tissues from 24 MALT lymphoma cases with 7 FL and 7 MCL. Samples were run on the HG-U133A, HG-U133B, and HG-U133 plus2 GeneChips.