Project description:The mechanism of action of the new antifungal compound 089 was identified in Saccharomyces cerevisiae. The compound had antifungal effects also on pathogenic fungi. While on Candida species the treatment induced cells death, on A. fumigatus strains it inhibited the conidia transition to hyphae. We carried out RNA sequencing analysis to evaluate at the molecular level the effect of the treatment on Aspergillus.
Project description:Comparative genomics and transcriptomics of the filamentous fungi Aspergillus oryzae and Aspergillus niger have opened possibilities for investigating the cellular metabolism and regulation of these fungi on a systemic level. The aim of this work was to understand how metabolism is regulated and to identify common regulatory responses between A. oryzae and A. niger. We therefore conducted batch fermentations with A. oryzae and A. niger grown on three different carbon sources (glucose, maltose, and xylose) in order to investigate their genome-wide transcription response Keywords: Two Aspergillus species and different carbon sources
Project description:An allopolyploid formation consists of the two processes of hybridisation and chromosome doubling. Hybridisation makes a different genome combined in the same cell, and genome M-bM-^@M-^\shockM-bM-^@M-^] and instability occur during this process, whereas chromosome doubling results in doubling and reconstructing the genome dosage. Recent studies have demonstrated that small RNAs, mainly siRNAs and miRNAs, play an important role in maintaining the genome reconstruction and stability. However, to date, little is known regarding the role of small RNAs during the process of wide hybridisation and chromosome doubling, which is essential to elucidate the mechanism of polyploidisation. Therefore, the genetic and DNA methylation alterations and changes in the siRNA and miRNA were assessed during the formation of an allodiploid (genome: AB) and its allotetraploid (genome: AABB) between Brassica rapa (M-bM-^YM-^@) and Brassica nigra (M-bM-^YM-^B) in the present study.The phenotypic analysis exhibited that the allotetraploid had high heterosis compared with their parents and the allodiploid. The methylation-sensitive amplification polymorphism (MSAP) analysis indicated that the proportion of changes in the methylation pattern of the allodiploid was significantly higher than that found in the allotetraploid, while the DNA methylation ratio was higher in the parents than the allodiploid and allotetraploid. The high-throughput sequencing results obtained for the small RNAs showed that the expression levels of miRNAs increased in the allodiploid and allotetraploid compared with the parents, and the expression levels of siRNAs increased and decreased compared with the parents B. rapa and B. nigra, respectively. Moreover, the percentages of miRNAs increased with an increase in the polyploidy levels, but the percentages of siRNAs and DNA methylation alterations decreased with an increase in the polyploidy levels. Furthermore, 320 known and 52 novel miRNAs were obtained from the parents in both the allodiploid and allotetraploid. However, quantitative real-time polymerase chain reaction (qRT PCR) analysis showed that the expression levels of the targets genes were negatively corrected with the expressed miRNAs.The study showed that siRNAs and DNA methylation play an important role in maintaining the genome stability in the formation of an allotetraploid. The miRNAs regulate gene expression and induce the phenotype variation, which may play an important role in the occurrence of heterosis in the allotetraploid. The findings of this study may provide new information for elucidating that the allotetraploids have a growth advantage over the parents and the allodiploids. High throughput sequence of the parents (Brassica rapa and Brassica nigra) and their hybrids (allodiploid and allotetraploid)
Project description:The unfolded protein response (UPR) is a network of intracellular signaling pathways that supports the ability of the secretory pathway to maintain equilibrium between the load of proteins entering the endoplasmic reticulum (ER) and the protein folding capacity of the ER lumen. Current evidence suggests that human pathogenic fungi rely heavily on this pathway for virulence, but there is limited understanding of the mechanisms involved. The best known functional output of the UPR is transcriptional upregulation of mRNAs involved in ER homeostasis. However, this does not take into account mechanisms of translational regulation that involve differential recruitment of mRNAs to ribosomes. In this study, a global analysis of transcript-specific translational regulation was performed in the pathogenic mold Aspergillus fumigatus to determine the nature and scope of the translational response to ER stress.
Project description:RNA-Seq was used to assess the gene expression profiles of 4 allodiploid embryonic stem cell lines and 4 control embryonic stem cell lines. Moreover, single-cell RNA-Seq was used to quantify the transcriptomes of 87 allodiploid single cells.
Project description:Comparative genomics and transcriptomics of the filamentous fungi Aspergillus oryzae and Aspergillus niger have opened possibilities for investigating the cellular metabolism and regulation of these fungi on a systemic level. The aim of this work was to understand how metabolism is regulated and to identify common regulatory responses between A. oryzae and A. niger. We therefore conducted batch fermentations with A. oryzae and A. niger grown on three different carbon sources (glucose, maltose, and xylose) in order to investigate their genome-wide transcription response Keywords: Two Aspergillus species and different carbon sources Three conditions (glucose, maltose and xylose) with three biological replicates for A. oryzae and A. niger
Project description:RNA-Seq was used to assess the gene expression profiles of 4 allodiploid embryonic stem cell lines and 4 control embryonic stem cell lines. Moreover, single-cell RNA-Seq was used to quantify the transcriptomes of 87 allodiploid single cells. Comparison of mRNA profiles of 4 allodiploid embryonic stem cell lines to 4 control mouse and rat embryonic stem cell lines using the Illumina HiSeq 2000 platform. Single-cell RNA-Seq was conducted to check the transcriptomes of single allodiploid embryonic and differentiated cells.
Project description:The full genome sequencing of the filamentous fungi Aspergillus nidulans, Aspergillus niger and Aspergillus oryzae has opened the possibilities for studying the cellular physiology of these fungi on a systemic level. As a tool to explore this, we are presenting an Affymetrix GeneChip developed for transcriptome analysis of any of the three above-mentioned aspergilli. Transcriptome analysis of triplicate batch cultivations of all three aspergilli on glucose-and xylose media has been performed, and used to validate the performance of the micro array. By doing gene comparisons of all three species, and cross-analysing this with the expression data, 23 genes, including the xylose transcriptional activator XlnR, have been identified to be a conserved response across the Aspergillus sp. Promoter analysis of the upregulated genes in all three species suggest the XlnR-binding site to be 5’-GGNTAAA-3’. We are thus presenting a validated tool for transcription analysis of three Aspergillus species and a methodology for comparative transcriptomics. Keywords: Physiological response
Project description:The full genome sequencing of the filamentous fungi Aspergillus nidulans, Aspergillus niger and Aspergillus oryzae has opened the possibilities for studying the cellular physiology of these fungi on a systemic level. As a tool to explore this, we are presenting an Affymetrix GeneChip developed for transcriptome analysis of any of the three above-mentioned aspergilli. Transcriptome analysis of triplicate batch cultivations of all three aspergilli on glucose-and xylose media has been performed, and used to validate the performance of the micro array. By doing gene comparisons of all three species, and cross-analysing this with the expression data, 23 genes, including the xylose transcriptional activator XlnR, have been identified to be a conserved response across the Aspergillus sp. Promoter analysis of the upregulated genes in all three species suggest the XlnR-binding site to be 5’-GGNTAAA-3’. We are thus presenting a validated tool for transcription analysis of three Aspergillus species and a methodology for comparative transcriptomics. Keywords: Physiological response