Project description:Purpose: Searching for sRNAs in Salmonella pullorum by RNA sequencing and exploring their functions.Methods: High-throughput sequencing of RNA extracted from Salmonella pullorum under normal growth conditions to detect newly discovered sRNAs, followed by experiments to verify their functions.Results: The proportion of Clean Reads of this sequencing was >65%, and the base Q30s were all above 85%, indicating that the sequencing quality is good and can be used for subsequent analysis. The sRNAscanner software predicted that 148 new sRNAs might exist on the reference genome of Salmonella fowl dysentery, and the reads obtained from sequencing were compared to the genome, and it was found that 110 out of the 148 newly predicted sRNAs could be detected.Conclusions: sRNAs are widely found in bacteria and are involved in many physiological processes. In this study, we detected new sRNAs in Salmonella pullorum by RNA-seq, which lays the foundation for the subsequent investigation of the regulatory functions of sRNAs in bacteria.
Project description:Salmonella enterica Pullorum(S. Pullorum) is one of the most important pathogens in poultry. A better understanding of the immune response and molecular modulation resulting from infection by S. Pullorum will facilitates the control of this pathogen. In this study, we determined the relationships among identified differential expressed genes (DEGs) and pathways via deeply mining microarray data from Guangxi Huang Chicken challenged with S. Pullorum.
Project description:This study was conducted to evaluate the effects of dietary supplemental magnolol and honokiol in broilers infected with S. pullorum. A total of 360 one-day-old broilers were selected and randomly divided into four groups with six replicates: the negative control group (CTL), S. pullorum-infected group (SP), and the S. pullorum-infected group supplemented with 300 mg/kg honokiol (SPH) or magnolol (SPM). Chicks in the SP, SPH, and SPM groups were orally treated with a 0.5 ml (4×108 CFU/mL) S. pullorum solution at 5 days of age, while chicks in the control (CTL) group received the same amount of sterilized PBS at the same age.At 14 and 21 days of age, one chick from each replicate was randomly selected to be weighed and slaughtered by jugular exsanguination after a 12-h fasting period. The ileum samples were collected to analyze the differential expression genes.
Project description:Purpose: Examining the transcriptome of Bacteroides thetaiotaomicron VPI-5482 challenged with Bacteroides phage to assess surface molecule expression changes Methods: Bacteroides thetaiotaomicron was grown in BPRM in vitro or Germ-Free mice were monocolonized with Bacteroides thetaiotaomicron and gavaged with ARB25 phage. Fold change was calculated as live phage versus heat-killed phage treated samples with n=3 biological replicates. Once cells reached an optical density corresponding to mid-log phase growth (absorbance between 0.4-0.5), RNA was isolated and rRNA depleted. Samples were multiplexed for sequencing on the Illumina HiSeq platform at the University of Michigan Sequencing Core. Data was analyzed using Arraystar software (DNASTAR, Inc.) using DEseq2 normalization with default parameters. Genes with significant up- or down-regulation were determined by the following criteria: genes with an average fold-change >5-fold and with at least 2/3 biological replicates with a normalized expression level >1% of the overall average, and a p-value < 0.05 (t test with Benjamini-Hochberg correction) Results: Specific capsule expression was increased in wild-type B. thetaiotaomicron during phage infection in vitro and in vivo. Many corresponding in vivo genes were upregulated as well as other surface layer proteins.