Project description:With the increasing resistance of many Gram-negative bacteria to existing classes of antibiotics, identifying new paradigms in antimicrobial discovery is an important research priority. Of special interest here are the proteins required for the biogenesis of the symmetric Gram-negative bacterial outer membrane. Seven Lpt proteins (LptA-G) associate in most Gram-negative bacteria to form a macromolecular complex spanning the entire envelope, which transports LPS molecules from their site of assembly at the inner membrane to the cell surface, powered by ATP hydrolysis in the cytoplasm. The periplasmic protein LptA comprises the protein bridge across the periplasm, which connects LptB2FGC at the inner membrane to LptD/E anchored in the outer membrane. We show here that the naturally occurring insect derived antimicrobial peptide thanatin targets LptA and LptD in the network of periplasmic protein-protein interactions required to assemble the Lpt complex, leading to inhibition ofLPS transport and OM biogenesis in Escherichia coli.
Project description:Gram-negative bacteria possess stress responses to maintain the integrity of the cell envelope. Stress sensors monitor outer membrane permeability, envelope protein folding, and energization of the inner membrane. The systems used by Gram-negative bacteria to sense and combat stress resulting from disruption of the peptidoglycan layer are not well characterized. The peptidoglycan layer is a single molecule that completely surrounds the cell and ensures its structural integrity. During cell growth new peptidoglcyan subunits are incorporated into the peptidoglycan layer by a series of enzymes called the penicillin-binding proteins (PBPs). To explore how Gram-negative bacteria respond to peptidoglycan stress, global gene expression analysis was used to identify Escherichia coli stress responses activated following inhibition of specific PBPs by the β-lactam antibiotics mecillinam and cefsulodin. Inhibition of PBPs with different roles in peptidoglycan synthesis has different consequences for cell morphology and viability, suggesting that not all perturbations to the peptidoglycan layer generate equivalent stresses. We demonstrate that inhibition of different PBPs resulted in both shared and unique stress responses. The regulation of capsular synthesis (Rcs) phosphorelay was activated by inhibition of all of the PBPs tested. Furthermore, we show that activation of the Rcs phosphorelay increased survival in the presence of these antibiotics, independently of capsule synthesis. Both activation of the phosphorelay and survival required signal transduction via the outer membrane lipoprotein RcsF and the response regulator RcsB. We propose that the Rcs pathway responds to peptidoglycan damage and contributes to the intrinsic resistance of E. coli to β-lactam antibiotics. We used microarrays to identify changes in gene expression resulting from treatment of Escherichia coli with the β-lactam antibiotics cefsulodin, mecillinam, or the combination. This SuperSeries is composed of the SubSeries listed below.
Project description:With the increasing resistance of many Gram-negative bacteria to existing classes of antibiotics, identifying new paradigms in antimicrobial discovery is an important research priority. Of special interest here are the proteins required for the biogenesis of the symmetric Gram-negative bacterial outer membrane. Seven Lpt proteins (LptA-G) associate in most Gram-negative bacteria to form a macromolecular complex spanning the entire envelope, which transports LPS molecules from their site of assembly at the inner membrane to the cell surface, powered by ATP hydrolysis in the cytoplasm. The periplasmic protein LptA comprises the protein bridge across the periplasm, which connects LptB2FGC at the inner membrane to LptD/E anchored in the outer membrane. We show here that the naturally occurring insect derived antimicrobial peptide thanatin targets LptA and LptD in the network of periplasmic protein-protein interactions required to assemble the Lpt complex, leading to inhibition ofLPS transport and OM biogenesis in Escherichia coli.
Project description:Gram-negative bacteria possess stress responses to maintain the integrity of the cell envelope. Stress sensors monitor outer membrane permeability, envelope protein folding, and energization of the inner membrane. The systems used by Gram-negative bacteria to sense and combat stress resulting from disruption of the peptidoglycan layer are not well characterized. The peptidoglycan layer is a single molecule that completely surrounds the cell and ensures its structural integrity. During cell growth new peptidoglcyan subunits are incorporated into the peptidoglycan layer by a series of enzymes called the penicillin-binding proteins (PBPs). To explore how Gram-negative bacteria respond to peptidoglycan stress, global gene expression analysis was used to identify Escherichia coli stress responses activated following inhibition of specific PBPs by the β-lactam antibiotics mecillinam and cefsulodin. Inhibition of PBPs with different roles in peptidoglycan synthesis has different consequences for cell morphology and viability, suggesting that not all perturbations to the peptidoglycan layer generate equivalent stresses. We demonstrate that inhibition of different PBPs resulted in both shared and unique stress responses. The regulation of capsular synthesis (Rcs) phosphorelay was activated by inhibition of all of the PBPs tested. Furthermore, we show that activation of the Rcs phosphorelay increased survival in the presence of these antibiotics, independently of capsule synthesis. Both activation of the phosphorelay and survival required signal transduction via the outer membrane lipoprotein RcsF and the response regulator RcsB. We propose that the Rcs pathway responds to peptidoglycan damage and contributes to the intrinsic resistance of E. coli to β-lactam antibiotics. We used microarrays to identify changes in gene expression resulting from treatment of Escherichia coli with the β-lactam antibiotics cefsulodin, mecillinam, or the combination. Keywords: dose response, stress response
Project description:Gram-negative bacteria possess stress responses to maintain the integrity of the cell envelope. Stress sensors monitor outer membrane permeability, envelope protein folding, and energization of the inner membrane. The systems used by Gram-negative bacteria to sense and combat stress resulting from disruption of the peptidoglycan layer are not well characterized. The peptidoglycan layer is a single molecule that completely surrounds the cell and ensures its structural integrity. During cell growth new peptidoglcyan subunits are incorporated into the peptidoglycan layer by a series of enzymes called the penicillin-binding proteins (PBPs). To explore how Gram-negative bacteria respond to peptidoglycan stress, global gene expression analysis was used to identify Escherichia coli stress responses activated following inhibition of specific PBPs by the β-lactam antibiotics mecillinam and cefsulodin. Inhibition of PBPs with different roles in peptidoglycan synthesis has different consequences for cell morphology and viability, suggesting that not all perturbations to the peptidoglycan layer generate equivalent stresses. We demonstrate that inhibition of different PBPs resulted in both shared and unique stress responses. The regulation of capsular synthesis (Rcs) phosphorelay was activated by inhibition of all of the PBPs tested. Furthermore, we show that activation of the Rcs phosphorelay increased survival in the presence of these antibiotics, independently of capsule synthesis. Both activation of the phosphorelay and survival required signal transduction via the outer membrane lipoprotein RcsF and the response regulator RcsB. We propose that the Rcs pathway responds to peptidoglycan damage and contributes to the intrinsic resistance of E. coli to β-lactam antibiotics. We used microarrays to identify changes in gene expression resulting from treatment of Escherichia coli with the β-lactam antibiotics cefsulodin, mecillinam, or the combination. This SuperSeries is composed of the following subset Series:; GSE10158: Expression of Escherichia coli treated with cefsulodin and mecillinam, alone and in combination; GSE10159: Expression of Escherichia coli treated with cefsulodin and mecillinam, alone at the minimum inhibitory concentration Experiment Overall Design: Refer to individual Series
Project description:Gram-negative bacteria possess stress responses to maintain the integrity of the cell envelope. Stress sensors monitor outer membrane permeability, envelope protein folding, and energization of the inner membrane. The systems used by Gram-negative bacteria to sense and combat stress resulting from disruption of the peptidoglycan layer are not well characterized. The peptidoglycan layer is a single molecule that completely surrounds the cell and ensures its structural integrity. During cell growth new peptidoglcyan subunits are incorporated into the peptidoglycan layer by a series of enzymes called the penicillin-binding proteins (PBPs). To explore how Gram-negative bacteria respond to peptidoglycan stress, global gene expression analysis was used to identify Escherichia coli stress responses activated following inhibition of specific PBPs by the β-lactam antibiotics mecillinam and cefsulodin. Inhibition of PBPs with different roles in peptidoglycan synthesis has different consequences for cell morphology and viability, suggesting that not all perturbations to the peptidoglycan layer generate equivalent stresses. We demonstrate that inhibition of different PBPs resulted in both shared and unique stress responses. The regulation of capsular synthesis (Rcs) phosphorelay was activated by inhibition of all of the PBPs tested. Furthermore, we show that activation of the Rcs phosphorelay increased survival in the presence of these antibiotics, independently of capsule synthesis. Both activation of the phosphorelay and survival required signal transduction via the outer membrane lipoprotein RcsF and the response regulator RcsB. We propose that the Rcs pathway responds to peptidoglycan damage and contributes to the intrinsic resistance of E. coli to β-lactam antibiotics. We used microarrays to identify changes in gene expression resulting from treatment of Escherichia coli with the β-lactam antibiotics cefsulodin, mecillinam, or the combination. Keywords: Dose response, stress response