ABSTRACT: Bacterial species, including Vibrio breoganii, Photobacterium sp. and Pseudoalteromonas sp. Samples were isolated from sea water, cedar swamps (methanotrophs enrichment), and soil. Genome sequencing and assembly
Project description:We compared genetic profiles of planktonic stage to biofilm stage of deep sea bacterium Pseudoalteromonas sp. SM9913 and revealed genetic features during switch from planktonic to pellicle stage in Pseudoalteromonas sp. SM9913.
Project description:We compared genetic profiles of planktonic stage to biofilm stage of deep sea bacterium Pseudoalteromonas sp. SM9913 and revealed genetic features during switch from planktonic to pellicle stage in Pseudoalteromonas sp. SM9913. mRNA profiles of Pseudoalteromonas sp. SM9913 planktonic cells, initial pellicle cells and mature pellicle cells were generated by Illumina Hiseq2000.
Project description:One of the most distinct features of Pseudoalteromonas sp. SCSIO 11900 is its ability to form a very robust pellicle than most Pseudoalteromonas strains. Thus we want to identify the genes essential for the pellicle formation of SCSIO 11900. We compared transcriptom profiles of planktonic cells, initial pellicle and mature pellicle of coral Pseudoalteromonas sp. SCSIO 11900 and revealed that some unique genes from horizontal gene transfer is involved in the pellicle formation of SCSIO 11900.
Project description:Transcriptomic sequencing was performed to obtain the key functional genes involved in the adaptation of oxidative stress induced by hydrogen peroxide (H2O2) in the Arctic bacterium Pseudoalteromonas sp. A2. Exposure to 1 mmol/L H2O2 resulted in large alterations of the transcriptome profile, including significant upregulation of 109 genes and significant downregulation of 174 genes. Functional classification of differentially expressed genes revealed that most of genes affiliated with biological adhesion, negative regulation of biological process, enzyme regulator activity, protein binding transcription factor activity and structural molecular activity were upregulated, and most of genes affiliated with multicellular organismal process and extracellular region were downregulated. It was notably that fifteen genes affiliated with flagella and four genes affiliated with heat shock proteins were significantly upregulated. Meanwhile, nine genes affiliated with cytochrome and cytochrome oxidase, and five genes affiliated with TonB-dependent receptor, were significantly downregulated. However, eighteen genes with antioxidant activity categorized by GO analysis showed differential expressions. This overall survey of transcriptome and oxidative stress-relevant genes can contribute to understand the adaptive mechanism of Arctic bacteria. five significant upregulated genes and five significant downregulated genes were selected using qRT-PCR to cinduct the oxidative stress. overall survey of transcriptomic sequencing by RNA-Seq of the Pseudoalteromonas sp. A2, an isolate from seawater with high activity against H2O2
Project description:MS/MS data obtained from crude extracts from Pseudoalteromonas sp. This data is not publisher yet, so, contact Mr. Christian Martin before use it.
Project description:Predictive modeling of wild microbial and viral community dynamics in Pseudoalteromonas sp. 13-15, evaluation using two viral systems under phosphate presence and absence conditions.
Project description:Methanotrophs, which help regulate atmospheric levels of methane, are active in diverse natural and man-made environments. This range of habitats and the feast-famine cycles seen by many environmental methanotrophs suggest that methanotrophs dynamically mediate rates of methane oxidation. Global methane budgets require ways to account for this variability in time and space. Functional gene biomarker transcripts are increasingly being studied to inform the dynamics of diverse biogeochemical cycles. Previously, per-cell transcript levels of the methane oxidation biomarker, pmoA, were found to vary quantitatively with respect to methane oxidation rates in model aerobic methanotroph, Methylosinus trichosporium OB3b. In the present study, these trends were explored for two additional aerobic methanotroph pure cultures, Methylocystis parvus OBBP and Methylomicrobium album BG8. At steady-state conditions, per cell pmoA mRNA transcript levels strongly correlated with per cell methane oxidation across the three methanotrophs across many orders of magnitude of activity (R2 = 0.91). Additionally, genome-wide expression data (RNA-seq) were used to explore transcriptomic responses of steady state M. album BG8 cultures to short-term CH4 and O2 limitation. These limitations induced regulation of genes involved in central carbon metabolism (including carbon storage), cell motility, and stress response.
Project description:The sugar metabolic mechanism on glucose, xylose, fructose and cellobiose as the sole or dual carbon source by Thermoanaerobacter sp. X514 was characterized by whole genome cDNA micorarrays.