Project description:Acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), cause severe endothelial dysfunction in the lung and vascular endothelial growth factor (VEGF) is elevated in ARDS. We have found that the levels of a VEGF-regulated microRNA, microRNA-1 (miR-1) is reduced in the lung endothelium after acute injury. Pulmonary endothelial cell (EC)-specific overexpression of miR-1 protects the lung against cell death and barrier dysfunction in both murine and human models and increases the survival of mice after pneumonia-induced ALI. MiR-1 has an intrinsic protective effect in pulmonary and other types of ECs; it inhibits apoptosis and necroptosis pathways and decreases capillary leak by protecting adherens and tight junctions. Comparative gene expression analysis and RISC recruitment assays identified miR-1 targets in the context of injury, including phosphodiesterase 5A (PDE5A), angiopoetin-2 (ANGPT2), connector enhancer of kinase suppressor of ras 3 (CNKSR3) and TNF alpha induced protein 2 (TNFAIP2). We validated miR-1-mediated regulation of ANGPT2 in both mouse and human ECs and found that in a 119-patient pneumonia cohort, miR-1 correlated inversely with ANGPT2. These findings illustrate the novel role of miR-1 as a cytoprotective orchestrator of endothelial response to acute injury with prognostic and therapeutic potential.
Project description:Acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), cause severe endothelial dysfunction in the lung and vascular endothelial growth factor (VEGF) is elevated in ARDS. We have found that the levels of a VEGF-regulated microRNA, microRNA-1 (miR-1) is reduced in the lung endothelium after acute injury. Pulmonary endothelial cell (EC)-specific overexpression of miR-1 protects the lung against cell death and barrier dysfunction in both murine and human models and increases the survival of mice after pneumonia-induced ALI. MiR-1 has an intrinsic protective effect in pulmonary and other types of ECs; it inhibits apoptosis and necroptosis pathways and decreases capillary leak by protecting adherens and tight junctions. Comparative gene expression analysis and RISC recruitment assays identified miR-1 targets in the context of injury, including phosphodiesterase 5A (PDE5A), angiopoetin-2 (ANGPT2), connector enhancer of kinase suppressor of ras 3 (CNKSR3) and TNF alpha induced protein 2 (TNFAIP2). We validated miR-1-mediated regulation of ANGPT2 in both mouse and human ECs and found that in a 119-patient pneumonia cohort, miR-1 correlated inversely with ANGPT2. These findings illustrate the novel role of miR-1 as a cytoprotective orchestrator of endothelial response to acute injury with prognostic and therapeutic potential.
Project description:We used microRNA microarrays to identify dysregulated microRNAs in mononuclear cells isolated from SEB-injured mice treated with Vehicle or THC
Project description:The goal of this observational study is to compare anesthetic modalities (intravenous propofol anesthesia with sevoflurane gas anesthesia) in patients who underwent colorectal cancer resection surgery regarding the outcome of acute kidney injury.
The main questions it aims to answer are:
* is there a difference in acute kidney injury incidence in the two anesthetic modalities?
* is there a difference in plasma creatinine between the two anesthetic modalities?
* are there any patient characteristics or intraoperative factors that effect the incidence of acute kidney injury in either anesthetic modality?
The study will analyze data from the CAN clinical trial database. (Cancer and Anesthesia: Survival After Radical Surgery - a Comparison Between Propofol or Sevoflurane Anesthesia, NCT01975064)
Project description:18 zero-hour and 18 selected post-transplant (Tx) biopsy samples from 18 kidney allografts (8 acute kidney injury (AKI), 10 PBx - protocol biopsies - controls) were analyzed by using the Affymetrix GeneChipM-BM-. miRNA 3.0 Array. Comparison between control group (protocol biopsies) and indication biopsies with histological lesions of acute tubular necrosis without rejection (ATN).