Project description:The antibiotic fosfomycin is widely recognized for treatment of lower urinary tract infections caused by Escherichia coli and lately gained importance as a therapeutic option to combat multidrug resistant bacteria. Still, resistance to fosfomycin frequently develops through mutations reducing its uptake. Whereas the inner membrane transport of fosfomycin has been extensively studied in E. coli, its outer membrane (OM) transport remains insufficiently understood. While evaluating minimal inhibitory concentrations in OM porin-deficient mutants, we observed that the E. coli ΔompCΔompF strain is five times more resistant to fosfomycin than the wild type and the respective single mutants. Continuous monitoring of cell lysis of porin-deficient strains in response to fosfomycin additionally indicated the relevance of LamB. Furthermore, the physiological relevance of OmpF, OmpC and LamB for fosfomycin uptake was confirmed by electrophysiological and transcriptional analysis. This study expands the knowledge of how fosfomycin crosses the OM of E. coli.
Project description:Fosfomycin is a bactericidal antibiotic, analogous to phosphoenolpyruvate (PEP) that exerts its activity by inhibiting the activity of MurA. This enzyme catalyzes the first step of peptidoglycan biosynthesis, the transfer of enolpyruvate from PEP to uridine- diphosphate-N-acetylglucosamine. Fosfomycin is increasingly used in the last years, mainly for treating infections caused by Gram-negative multidrug resistant bacteria as Stenotrophomonas maltophilia, an opportunistic pathogen characterized by its low susceptibility to antibiotics of common use. The mechanisms of mutational resistance to fosfomycin in Stenotrophomonas maltophilia were studied in the current work. None of the mechanisms so far described for other organisms, which include the production of fosfomycin inactivating enzymes, target modification, induction of alternative peptidoglycan biosynthesis pathway and the impaired entrance of the antibiotic, are involved in the acquisition of such resistance by this bacterial species. Rather the unique cause of resistance in the studied mutants is the mutational inactivation of different enzymes belonging to the Embden-Meyerhof-Parnas central metabolism pathway. The amount of intracellular fosfomycin accumulation did not change in any of these mutants showing that neither the inactivation nor the transport of the antibiotic were involved. Transcriptomic analysis also showed that the mutants did not present changes in the expression level of putative alternative peptidoglycan biosynthesis pathway genes neither any related enzyme. Finally, the mutants did not present an increased PEP concentration that might compete with fosfomycin for its binding to MurA. Based on these results, we describe a completely novel mechanism of antibiotic resistance based on the remodeling of S. maltophilia metabolism.
Project description:Thermal proteome profiling of E. coli lysate treated with fosfomycin (0.2 mg/ml). Untargeted proteomics with microflow method and with 60 min gradient.
Project description:There is increasing evidence to support a role for sigma factor 54 (RpoN) in the regulation of stress resistance factors and protein secretion systems important to bacterial transmission and pathogenesis. In enterohemorrhagic E. coli O157:H7, acid resistance and type III secretion are essential determinants of gastric passage and colonization. This study thus described the transcriptome of an rpoN null strain of E. coli O157:H7 (EcJR-8) to determine the influence of RpoN on virulence and stress resistance gene regulation, and further explored its contribution to glutamate-dependent acid resistance (GDAR). Inactivation of rpoN resulted in the growth phase-dependent, differential expression of 104 genes. This included type III secretion structural and regulatory genes encoded on the locus of enterocyte effacement (LEE), as well as GDAR genes gadA, gadBC and gadE. Upregulation of gad transcript levels in EcJR-8 during logarithmic growth correlated with increased GDAR and survival in a model stomach. Acid susceptibility was reconstituted in EcJR-8 complemented in trans with wild-type rpoN. Acid resistance in EcJR-8 was dependent on exogenous glutamate, gadE and rpoS, but was independent of hns. Results also suggest that GDAR may be controlled by RpoN at multiple regulatory levels. This study supports the hypothesis that RpoN is an important regulator of virulence and stress resistance factors in E. coli O157:H7, and is the first to examine the mechanism by which it represses GDAR.
Project description:PhoP is considered a regulator of virulence despite being conserved in both pathogenic and non-pathogenic Enterobacteriaceae. While Escherichia coli strains represent both non-pathogenic commensal isolates and numerous virulent pathotypes, the PhoP virulence regulator has only been studied in commensal E. coli. To better understand how conserved transcription factors contribute to virulence, we characterized PhoP in pathogenic E. coli. Loss of phoP significantly attenuated E. coli during extraintestinal infection. This was not surprising since we demonstrated that PhoP differentially regulated the transcription of >600 genes. In addition to survival at acidic pH and resistance to polymyxin B, PhoP was required for repression of motility and oxygen-independent changes in the expression of primary dehydrogenase and terminal reductase respiratory chain components. All phenotypes have in common a reliance on an energized membrane. Thus, we hypothesized that PhoP mediated these effects by regulating genes that generate a proton motive force. Indeed, bacteria lacking PhoP exhibited a hyper-polarized membrane, and dissipation of the transmembrane electrochemical gradient increased the susceptibility of the phoP mutant to acidic pH, while inhibiting respiratory generation of the proton gradient restored resistance to antimicrobial peptides independent of lipopolysaccharide modification. These findings demonstrate a connection between PhoP, virulence, and the energized state of the membrane.
Project description:We report regulatory interactions on four E. coli transcription factors in relation to the acid resistance systems by using a combination of ChIP-Seq and gene expression analysis