Project description:Cyanobacteria are highly promising microorganisms in forthcoming biotechnologies. Besides the systematic development of molecular tools for genetic engineering, the design of chassis strains and novel reactor concepts are in focus. The latter includes capillary biofilm reactors (CBR), which offer a high surface area-to-volume ratio and very high cell densities. In this context, Tolypothrix sp. PCC 7712 was found to be highly suited for this reactor system due to maximal surface coverage, extraordinarily strong biofilm attachment, and high biomass formation. Here, we provide the genome sequence of Tolypothrix sp. PCC 7712 to potentially allow targeted strain engineering. Surprisingly, it was almost identical to an available incomplete genome draft of Tolypothrix sp. PCC 7601. Thus, we completely sequenced this strain as well and compared it in detail to strain PCC 7712. Comparative genome analysis revealed 257 and 80 unique protein-coding sequences for strains PCC 7601 and PCC 7712, respectively. Clustering genomes based on average nucleotide identity (ANI) and 16S rRNA homology showed 99.98% similarity and only minor distance, respectively, between the two strains in contrast to 21 other cyanobacterial genomes. Despite these high similarities, both strains differ in the ability to fix atmospheric nitrogen and show specific sequence variations, which are discussed in the paper.
Project description:Application of genome-scale 'omics approaches to dissect subcellular pathways and regulatory networks governing the fast-growing response of Synechococcus sp. PCC 7002 response to variable irradience levels. We employed controlled cultivation and next-generation sequencing technology to identify transcriptional responses of euryhaline unicellular cyanobacterium Synechococcus sp. PCC 7002 grown under steady state conditions at six irradiance levels ranging from 33 to 760 µmol photons m-2 sec-1.
Project description:Application of genome-scale 'omics approaches to dissect subcellular pathways and regulatory networks governing the fast-growing response of Synechococcus sp. PCC 7002 response to variable irradience levels.
Project description:Cyanobacteria are valuable organisms for studying the physiology of photosynthesis and carbon fixation as well as metabolic engineering for the production of fuels and chemicals. This work describes a novel counter selection method for the cyanobacterium Synechococcus sp. PCC 7002 based on organic acid toxicity. The organic acids acrylate, 3-hydroxypropionate, and propionate were shown to be inhibitory towards PCC 7002 and other cyanobacteria at low concentrations. Inhibition was overcome by a loss of function mutation in the gene acsA. Loss of AcsA function was used as a basis for an acrylate counter selection method. DNA fragments of interest were inserted into the acsA locus and strains harboring the insertion were isolated on selective medium containing acrylate. This methodology was also used to introduce DNA fragments into a pseudogene, glpK. Application of this method will allow for more advanced genetics and engineering studies in PCC 7002 including the construction of markerless gene deletions and insertions. The acrylate counter-selection could be applied to other cyanobacterial species where AcsA activity confers acrylate sensitivity (e.g. Synechocystis sp. PCC 6803).