Project description:The comparative integrated multi-omics analysis identifies CA2 as a novel target for chordoma Running title: The integrated multi-omics analysis in chordoma
Project description:We use Saccharomyces cerevisiae to perform absolute quantitative multi-omics analysis to map interactions of different cellular processes during the yeast cell cycle.
Project description:We use Saccharomyces cerevisiae grown on ethanol to perform absolute quantitative multi-omics analysis to map interactions of different cellular processes during the yeast cell cycle.
Project description:Multi-Omics analysis to gain novel insights into clear cell renal carcinoma aetiology and progression. The DNA methylation data of 121 clear clear renal carcinoma (ccRCC) were integrated with WGS and transcriptomic data using Multi-Omics Factor Analysis (MOFA) to detect the inter-patient variations related to aetiological and disease progression related factors.
Project description:This study aimed to identify a biomarker predicting response to ustekinumab therapy. Therefore, we used transcriptomic data (colonic and ileal tissue, CD4 T-cell and CD14 monocytes), which we integrated through Multi-Omics Factor Analysis.
Project description:Here we describe our unprecedented approach in proposing parsley (PAR) as a nutraceutical intervention in inflammatory bowel disease (IBD) using a mouse model of dextran sodium sulphate (DSS)-induced colitis, following a multi-integrated-omics analysis. PAR supplementation (n=7) significantly improved colon shortening and increased the disease activity index compared to the DSS group (n=7). The colonic transcriptome revealed the down-regulation of inflammatory cytokines, and the hepatic transcriptome and metabolome revealed the up-regulation of fatty acid synthesis genes, thereby improving body weight loss. Down-regulated cancer markers were observed in the hepatic transcriptome and proteome. A global plasma metabolite analysis indicated shifts in the citric cycle and urea cycle, implicating improved impaired glycolysis and oxidative stress. Our integration of three omics analyses highlighted the involvement of the methionine-recycling pathway and PARM-bM-^@M-^Ys role in decreasing the risk of IBD. This pioneering use of multi-integrated-omics in the evaluation of nutrientsM-bM-^@M-^Y effects on physiology is expected to be widely useful and informative, shaping the future of nutritional research. Here we describe our unprecedented approach in proposing parsley (PAR) as a nutraceutical intervention in inflammatory bowel disease (IBD) using a mouse model of dextran sodium sulphate (DSS)-induced colitis, following a multi-integrated-omics analysis. PAR supplementation (n=7) significantly improved colon shortening and increased the disease activity index compared to the DSS group (n=7). The colonic transcriptome revealed the down-regulation of inflammatory cytokines, and the hepatic transcriptome and metabolome revealed the up-regulation of fatty acid synthesis genes, thereby improving body weight loss. Down-regulated cancer markers were observed in the hepatic transcriptome and proteome. A global plasma metabolite analysis indicated shifts in the citric cycle and urea cycle, implicating improved impaired glycolysis and oxidative stress. Our integration of three omics analyses highlighted the involvement of the methionine-recycling pathway and PARM-bM-^@M-^Ys role in decreasing the risk of IBD. This pioneering use of multi-integrated-omics in the evaluation of nutrientsM-bM-^@M-^Y effects on physiology is expected to be widely useful and informative, shaping the future of nutritional research. Total hepatic and colonic RNA from each respective group were pooled (n=7). The microarray analysis was carried as out as described by Jia et al. 8 Mouse Genome 430 2.0 Array GeneChips (Affymetrix, Santa Clara, CA) containing over 30,000 gene probe sets were used for genome-wide expression profiling.