Project description:Aging has multifaceted effects on the immune system, but how aging affects tissue-specific immunity is not well-defined. Bladder diseases characterized by chronic inflammation are highly prevalent in older women, but mechanisms by which aging promotes these pathologies remain unknown. Tissue transcriptomics of unperturbed, young, and aged bladders identified a highly altered immune landscape as a fundamental feature of the aging female bladder. Detailed mapping of immune cells using single cell RNA- sequencing revealed novel subsets of macrophages and dendritic cells and unique changes to the immune repertoire in the aged bladder. B and T cells are highly enriched in aged bladders and spontaneously form organized bladder tertiary lymphoid tissues (bTLTs).
Project description:Aging has multifaceted effects on the immune system, but how aging affects tissue-specific immunity is not well-defined. Bladder diseases characterized by chronic inflammation are highly prevalent in older women, but mechanisms by which aging promotes these pathologies remain unknown. Tissue transcriptomics of unperturbed, young, and aged bladders identified a highly altered immune landscape as a fundamental feature of the aging female bladder. Detailed mapping of immune cells using single cell RNA- sequencing revealed novel subsets of macrophages and dendritic cells and unique changes to the immune repertoire in the aged bladder. B and T cells are highly enriched in aged bladders and spontaneously form organized bladder tertiary lymphoid tissues (bTLTs).
Project description:Identification of differentially expressed genes in young (3 month old) versus aged (24 month old) mouse hematopoietic stem cells. Comparison of genes differentially expressed in hematopoietic stem cells of young mice with conditional deletion of mTOR within vascular endothelium.
Project description:Age-related impairments in myoblast differentiation may contribute to reductions in muscle function in older adults but the underlying proteostasis processes are not well understood. We investigated young (P6-10) and replicatively aged (P48-50) C2C12 myoblast cultures during early (0h-24h) and late (72h-96h) stages of differentiation using deuterium oxide (D2O) labelling and mass spectrometry. The absolute dynamic profiling technique for proteomics (Proteo-ADPT) was used to quantify the absolute rates of abundance change, synthesis and degradation of individual proteins. Proteo-ADPT encompassed 116 proteins and 74 proteins exhibited significantly (P<0.05, FDR <5 %) different changes in abundance between young and aged cells at early and later periods of differentiation. Young cells exhibited a steady pattern of growth, protein accretion and fusion, whereas aged cells failed to gain protein mass or undergo fusion during later differentiation. Maturation of the proteome was retarded in aged myoblasts at the onset of differentiation, but the proteome appeared to ‘catch up’ with the young cells during the early differentiation period. However, this ‘catch up’ process in aged cells was not accomplished by higher levels of protein synthesis. Instead, a lower level of protein degradation in aged cells was responsible for the elevated gains in protein abundance. Our novel data point to a loss of proteome quality as a precursor to the lack of fusion of aged myoblasts and highlights dysregulation of protein degradation, particularly of ribosomal and chaperone proteins, as a key mechanism that may contribute to age-related declines in the capacity of myoblasts to undergo differentiation.
Project description:Identification of differentially expressed genes in young (3 month old) versus aged (24 month old) mouse bone marrow derived endothelial cells. Comparison of genes differentially expressed in bone marrow derived endothelial cells of young mice with conditional deletion of mTOR within vascular endothelium.