Project description:To find miRNAs that involve in renal epithelial transition and renal fibrosis, we performed unilateral ureteral obstruction of mice for 7 days. After that, we harvested kidneys, and performed microarray of miRNA. Contralateral kidneys without ureteral obstruction were used as controls. miRNAs were purified from kidneys with ureteral obstruction and contralateral kidneys without ureteral obstruction. Then microarray of miRNA was performed (n=4). miRNAs up-regulated in kidneys with ureteral obsctruction compared with contralateral kidneys were sorted. We performed unilateral ureteral obstruction of mice for 7 days, and harvested kidneys.
Project description:To find miRNAs that involve in renal epithelial transition and renal fibrosis, we performed unilateral ureteral obstruction of mice for 7 days. After that, we harvested kidneys, and performed microarray of miRNA. Contralateral kidneys without ureteral obstruction were used as controls. miRNAs were purified from kidneys with ureteral obstruction and contralateral kidneys without ureteral obstruction. Then microarray of miRNA was performed (n=4). miRNAs up-regulated in kidneys with ureteral obsctruction compared with contralateral kidneys were sorted.
Project description:We investigated if Axl receptor tyrosine kinase was up-regulated in unilateral ureteral obstruction (UUO) and if blocking of Axl by a small molecule called BGB324 (also called Bemcentinib) reduces fibrosis development in the ligated kidney as compared to treatment with its vehicle alone.
Project description:Interleukin (IL)-33 is a cytokine that appears to mediate fibrosis by signaling via its receptor ST2 (IL-33R/IL1RL1). It is also, however, a protein that after synthesis is sorted to the cell nucleus, where it appears to affect chromatin folding. Here we describe a novel role for nuclear IL-33 in regulating the fibroblast phenotype in murine kidney fibrosis driven by unilateral ureteral obstruction. Transcriptional profiling of IL-33-deficient kidneys 24h after ligation revealed enhanced expression of fibrogenic genes and enrichment of gene sets involved in extracellular matrix formation and remodeling. These changes relied on intracellular effects of IL-33, because they were not reproduced by treatment with a neutralizing antibody to IL-33 that prevents IL-33R/ST2L receptor signaling nor were they observed in IL33R/ST2-deficient kidneys. To further explore the intracellular function of IL-33, we established transcription profiles of human fibroblasts, observing that knockdown of IL-33 skewed the transcription profile from an inflammatory towards a myofibroblast phenotype, reflected in higher levels of COL3A1, COL5A1 and transgelin protein, as well as lower expression levels of IL6, CXCL8, CLL7 and CCL8. In conclusion, our findings suggest that nuclear IL-33 in fibroblasts dampens the initial profibrotic response until persistent stimuli, as enforced by UUO, can override this protective mechanism.
Project description:Congenital obstructive nephropathy (CON) is the leading cause of pediatric chronic kidney diseases with high morbidity and mortality.To identify differentially expressed genes, microarray analysis was performed using the unilateral ureteral obstruction (UUO)-induced neonatal rat model of CON.
Project description:Chronic kidney disease (CKD) is a burden for Public Health and concerns millions of individuals worldwide. Independently of the cause, CKD is secondary to the replacement of functional renal tissue by extra-cellular matrix proteins (i.e fibrosis) that progressively impairs kidney function. The pathophysiological pathways that control the development of renal fibrosis are common to most of the nephropathies involving native kidneys or kidney grafts. Unfortunately, very few treatments are available to stop renal fibrosis and most of the therapeutic strategies are often barely able to slow down the progression of fibrogenesis in native kidneys. Therefore, it is mandatory to discover new therapeutic pathways to stop renal fibrosis. Our objective is to study new pathways involved in renal fibrosis. We thus decided to use the model of Unilateral Ureteral renal Obstruction in mice, a fast and reproducible experimental model of renal fibrosis. We studied renal fibrosis using experimental model of ureteral unilateral obstruction in mice, which was performed by complete ligation of the left ureter. The control lateral right kidney served as internal control.