Project description:Gut microbiota dysbiosis characterizes systemic metabolic alteration, yet its causality is debated. To address this issue, we transplanted antibiotic-free conventional wild-type mice with either dysbiotic (“obese”) or eubiotic (“lean”) gut microbiota and fed them either a NC or a 72%HFD. We report that, on NC, obese gut microbiota transplantation reduces hepatic gluconeogenesis with decreased hepatic PEPCK activity, compared to non-transplanted mice. Of note, this phenotype is blunted in conventional NOD2KO mice. By contrast, lean microbiota transplantation did not affect hepatic gluconeogenesis. In addition, obese microbiota transplantation changed both gut microbiota and microbiome of recipient mice. Interestingly, hepatic gluconeogenesis, PEPCK and G6Pase activity were reduced even once mice transplanted with the obese gut microbiota were fed a 72%HFD, together with reduced fed glycaemia and adiposity compared to non-transplanted mice. Notably, changes in gut microbiota and microbiome induced by the transplantation were still detectable on 72%HFD. Finally, we report that obese gut microbiota transplantation may impact on hepatic metabolism and even prevent HFD-increased hepatic gluconeogenesis. Our findings may provide a new vision of gut microbiota dysbiosis, useful for a better understanding of the aetiology of metabolic diseases. all livers are from NC-fed mice only.
Project description:Distal gut bacteria play a pivotal role in the digestion of dietary polysaccharides by producing a large number of carbohydrate-active enzymes (CAZymes) that the host otherwise does not produce. We report here the design of a high density custom microarray that we used to spot non-redundant DNA probes for more than 6,500 genes encoding glycoside hydrolases and lyases selected from 174 reference genomes from distal gut bacteria. The custom microarray was tested and validated by the hybridization of bacterial DNA extracted from the stool samples of lean, obese and anorexic individuals. Our results suggest that a microarray-based study can detect genes from low-abundance bacteria better than metagenomic-based studies. A striking example was the finding that a gene encoding a GH6-family cellulase was present in all subjects examined, whereas metagenomic studies have consistently failed to detect this gene in both human and animal gut microbiomes. In addition, an examination of eight stool samples allowed the identification of a corresponding CAZome core containing 46 families of glycoside hydrolases and polysaccharide lyases, which suggests the functional stability of the gut microbiota despite large taxonomical variations between individuals. Fecal samples were collected from eight female subjects. Three were obese subjects of BMI kg m-2: 35, 46.8 and 51.3, respectively; age: 42, 21 and 65 years old, respectively. Three were anorexic women of BMI kg m-2: 9.8, 10 and 13.7, respectively; age: 19, 23 and 49 years old, respectively. Finally, two fecal samples from lean women of BMI kg m-2: 18.6 and 23.42 were analyzed.
Project description:Microbial RNAseq analysis of cecal and fecal samples collected from mice colonized with the microbiota of human twins discordant for obesity. Samples were colleted at the time of sacrifice, or 15 days after colonization from mice gavaged with uncultured or cultured fecal microbiota from the lean twins or their obese co-twins. Samples were sequenced using Illumina HiSeq technology, with 101 paired end chemistry. Comparisson of microbial gene expression between the microbiota of lean and obese twins fed a Low fat, rich in plant polysaccharide diet.
Project description:Distal gut bacteria play a pivotal role in the digestion of dietary polysaccharides by producing a large number of carbohydrate-active enzymes (CAZymes) that the host otherwise does not produce. We report here the design of a high density custom microarray that we used to spot non-redundant DNA probes for more than 6,500 genes encoding glycoside hydrolases and lyases selected from 174 reference genomes from distal gut bacteria. The custom microarray was tested and validated by the hybridization of bacterial DNA extracted from the stool samples of lean, obese and anorexic individuals. Our results suggest that a microarray-based study can detect genes from low-abundance bacteria better than metagenomic-based studies. A striking example was the finding that a gene encoding a GH6-family cellulase was present in all subjects examined, whereas metagenomic studies have consistently failed to detect this gene in both human and animal gut microbiomes. In addition, an examination of eight stool samples allowed the identification of a corresponding CAZome core containing 46 families of glycoside hydrolases and polysaccharide lyases, which suggests the functional stability of the gut microbiota despite large taxonomical variations between individuals.
Project description:The health benefits of physical activity are well documented, but several exercise response parameters are attenuated in obese individuals. The goal of this study was to identify molecular mechanisms that may influence exercise response in skeletal muscle of obese individuals. We performed comparison of the transcriptome in muscle from lean and obese individuals before and after an acute exercise bout.
2022-05-04 | GSE185957 | GEO
Project description:Gut microbiota lean, obese, and diabetic
| PRJEB26082 | ENA
Project description:microbiota differences in lean and obese individuals in UAE
Project description:<p>Emerging evidence that the gut microbiota may contribute in important ways to human health and disease has led us and others to hypothesize that both symbiotic and pathological relationships between gut microbes and their host may be key contributors to obesity and the metabolic complications of obesity. Our "Thrifty Microbiome Hypothesis" poses that gut microbiota play a key role in human energy homeostasis. Specifically, constituents of the gut microbial community may introduce a survival advantage to its host in times of nutrient scarcity, promoting positive energy balance by increasing efficiency of nutrient absorption and improving metabolic efficiency and energy storage. However, in the presence of excess nutrients, fat accretion and obesity may result, and in genetically predisposed individuals, increased fat mass may result in preferential abdominal obesity, ectopic fat deposition (liver, muscle), and metabolic complications of obesity (insulin resistance, hypertension, hyperlipidemia). Furthermore, in the presence of excess nutrients, a pathological transition of the gut microbial community may occur, causing leakage of bacterial products into the intestinal lymphatics and portal circulation, thereby inducing an inflammatory state, further aggravating metabolic syndrome traits and accelerating atherosclerosis. This pathological transition and the extent to which antimicrobial leakage occurs and causes inflammatory and other maladaptive sequelae of obesity may also be influenced by host factors, including genetics. In the proposed study, we will directly test the Thrifty Microbiome Hypothesis by performing detailed genomic and functional assessment of gut microbial communities in intensively phenotyped and genotyped human subjects before and after intentional manipulation of the gut microbiome. To address these hypotheses, five specific aims are proposed: (1) enroll three age- and sex-matched groups from the Old Order Amish: (i) 50 obese subjects (BMI > 30 kg/m2) with metabolic syndrome, (ii) 50 obese subjects (BMI > 30 kg/m2) without metabolic syndrome, and (iii) 50 non-obese subjects (BMI < 25 kg/m2) without metabolic syndrome and characterize the architecture of the gut microbiota from the subjects enrolled in this study by high-throughput sequencing of 16S rRNA genes; (2) characterize the gene content (metagenome) to assess the metabolic potential of the gut microbiota in 75 subjects to determine whether particular genes or pathways are correlated with disease phenotype; (3) characterize the transcriptome in 75 subjects to determine whether differences in gene expression in the gut microbiota are correlated with disease phenotype, (4) determine the effect of manipulation of the gut microbiota with antibiotics on energy homeostasis, inflammation markers, and metabolic syndrome traits in 50 obese subjects with metabolic syndrome and (5) study the relationship between gut microbiota and metabolic and cardiovascular disease traits, weight change, and host genomics in 1,000 Amish already characterized for these traits and in whom 500K Affymetrix SNP chips have already been completed. These studies will provide our deepest understanding to date of the role of gut microbes in terms of 'who's there?', 'what are they doing?', and 'how are they influencing host energy homeostasis, obesity and its metabolic complications? PUBLIC HEALTH RELEVANCE: This study aims to unravel the contribution of the bacteria that normally inhabit the human gastrointestinal tract to the development of obesity, and its more severe metabolic consequences including cardiovascular disease, insulin resistance and Type II diabetes. We will take a multidisciplinary approach to study changes in the structure and function of gut microbial communities in three sets of Old Order Amish patients from Lancaster, Pennsylvania: obese patients, obese patients with metabolic syndrome and non-obese individuals. The Old Order Amish are a genetically closed homogeneous Caucasian population of Central European ancestry ideal for genetic studies. These works have the potential to provide new mechanistic insights into the role of gut microflora in obesity and metabolic syndrome, a disease that is responsible for significant morbidity in the adult population, and may ultimately lead to novel approaches for prevention and treatment of this disorder.</p>
Project description:The overall goal of this studyis to compare the transcription differences of epicardial adipose tissue between between lean and obese and Type 2 diabetic individuals