Project description:The microbial degradation pathways of bicyclic monoterpenes contain unknown enzymes for carbon-carbon cleavages. Such enzymes may also be present in the betaproteobacterium Castellaniella defragrans, a model organism to study the anaerobic monoterpene degradation. In this study, a deletion mutant strain missing the first enzyme of the monocyclic monoterpene pathway transformed cometabolically the bicyclics sabinene, 3-carene and α-pinene into several monocyclic monoterpenes and traces of cyclic monoterpene alcohols. Proteomes of cells grown on bicyclic monoterpenes resembled the proteomes of cells grown on monocyclic monoterpenes. Many transposon mutants unable to grow on bicyclic monoterpenes contained inactivated genes of the monocyclic monoterpene pathway. These observations suggest that the monocyclic degradation pathway is used to metabolize bicyclic monoterpenes. The initial step in the degradation is a decyclization (ring-opening) reaction yielding monocyclic monoterpenes, which can be considered as a reverse reaction of the olefin cyclization of polyenes.
Project description:The betaproteobacterium Castellaniella defragrans 65Phen grows on monoterpenes at concentrations toxic to many bacteria. Tolerance mechanisms include modifications of the membrane fatty acid composition and the mineralization of monoterpenes. In this study, we characterized an efflux transporter associated to the monoterpene metabolism. The inner-membrane transporter AmeD (apolar monoterpene efflux) affiliated to the HAE3 (hydrophobe/amphiphile efflux) family within the Resistance-Nodulation-Division (RND) superfamily. RND pumps of the HAE3 family are known for transporting substrates into the periplasm. AmeD is co-expressed with the outer membrane protein AmeA and the periplasmic proteins AmeB and AmeC, suggesting an export channel into the environment similar to HAE1-type RND exporters. Proteins AmeABCD are encoded within a genetic island involved in the metabolism of acyclic and cyclic monoterpenes. The deletion of ameABCD translated into a decrease in tolerance to monoterpenes in liquid cultures. The addition of acetate as cosubstrate in limonene-containing cultures partially alleviated monoterpene toxicity in the deletion mutant. Accumulation of Nile Red in cells of C. defragrans required dissipation of the proton motive force with carbonyl cyanide m-chlorophenylhydrazone (CCCP). Cells lacking AmeABCD accumulated more Nile Red, suggesting an export function of the proteins. Our observations suggest that the tetrapartite RND transporter AmeABCD acts as an exporter during monoterpene detoxification in C. defragrans.