Project description:We systematically generated large-scale data sets to improve genome annotation for the nematode Caenorhabditis elegans, a key model organism. These data sets include transcriptome profiling across a developmental time course, genome-wide identification of transcription factor-binding sites, and maps of chromatin organization. From this, we created more complete and accurate gene models, including alternative splice forms and candidate noncoding RNAs. We constructed hierarchical networks of transcription factor-binding and microRNA interactions and discovered chromosomal locations bound by an unusually large number of transcription factors. Different patterns of chromatin composition and histone modification were revealed between chromosome arms and centers, with similarly prominent differences between autosomes and the X chromosome. Integrating data types, we built statistical models relating chromatin, transcription factor binding, and gene expression. Overall, our analyses ascribed putative functions to most of the conserved genome.
Project description:We identified target genes for NHR-25 by ChIP-seq at L1 stage of C. elegans. Transcription factor genes were tagged with GFP and their expression examined at L1 stage. Since there are no direct target genes known for NHR-25 that can be used for assessment of enrichment efficiency by quantitative PCR (qPCR), we chose to repeat ChIP-seq experiment of another GFP tagged transcription factor, PHA-4 for which the ChIP-seq was performed during a pilot experiment of modENCODE project using the same transgenic strain and antibody (a gift from Tony Hyman lab).