Project description:Genomic content of Vaccine strains were probed against the known sequence of the virulent strain Rlow of M. gallisepticum to identify divergent or absent genes in the attenuated strains.
Project description:Inactivation of blaNDM-1-positive and blaNDM-1-negative Escherichia coli strains and their differential gene expression upon solar irradiation
| PRJEB13897 | ENA
Project description:blaNDM-5-positive E.coli from chicken farm
Project description:Background. The bacterial foodborne pathogen Campylobacter jejuni is a common cause of acute gastroenteritis and is also associated with the postinfectious neuropathies, Guillain-Barré and Miller Fisher syndromes. This study described the use of multilocus sequence typing and DNA microarrays to examine the genetic content of a collection of South African C. jejuni strains, recovered from patients with enteritis, Guillain-Barré or Miller Fisher syndromes. Methodology/Principal Findings. The comparative genomic analysis by using multilocus sequence typing and DNA microarrays demonstrated that the South African strains with Penner heat-stable (HS) serotype HS:41 were clearly distinct from the other South African strains. Further analysis of the DNA microarray data demonstrated that the serotype HS:41 strains from South African GBS and enteritis patients are highly similar in gene content. Interestingly, the South African HS:41 strains were distinct in gene content when compared to serotype HS:41 strains from other geographical locations due to the presence of genomic islands, referred to as Campylobacter jejuni integrated elements. Only the genomic integrated element CJIE1, a Campylobacter Mu-like prophage, was present in the South African HS:41 strains whereas absent in the closely-related HS:41 strains from Mexico. A more distantly-related HS:41 strain from Canada possessed both genomic integrated elements CJIE1 and CJIE2. Conclusion/Significance. These findings demonstrated that these C. jejuni integrated elements may contribute to the differentiation of closely-related C. jejuni strains. In addition, the presence of bacteriophage-related genes in CJIE1 may probably contribute to increasing the genomic diversity of these C. jejuni strains. This comparative genomic analysis of the foodborne pathogen C. jejuni provides fundamental information that potentially could lead to improved methods for analyzing the epidemiology of disease outbreaks and their sources. Keywords: comparative genomic indexing analysis
Project description:Genotyping studies suggest that there is genetic variability among P. gingivalis strains, however the extent of variability remains unclear, and the regions of variability have only partially been identified. We previously used heteroduplex analysis of the ribosomal operon intergenic spacer region (ISR) to type P. gingivalis strains in several diverse populations, identifying 6 predominant heteroduplex types and many minor ones. In addition we used ISR sequence analysis to determine the relatedness of P. gingivalis strains to one another, and demonstrated a link between ISR sequence phylogeny and the disease-associated phenotype of P. gingivalis strains. The availability of whole genome microarrays based on the genomic sequence of strain W83 has allowed a more comprehensive analysis of P. gingivalis strain variability, using the entire genome. The objectives of this study were to define the phylogeny of P. gingivalis strains using the entire genome, to compare the phylogeny based on genome content to the phylogeny based on a single locus (ISR), and to identify genes that are associated with the strongly disease-associated strain W83 that could be important for virulence. Keywords: Comparative genomic hybridization
Project description:Vibrio parahaemolyticus is a Gram-negative marine bacterium. A limited population of the organisms causes acute gastroenteritis in humans. Almost all of the clinical V. parahaemolyticus isolates exhibit a beta-type hemolysis on Wagatsuma agar, known as the Kanagawa phenomenon (KP). KP is induced by the thermostable direct hemolysin (TDH) produced by the organism, and has been considered a crucial marker to distinguish pathogenic strains from non-pathogenic ones. Since 1996, so-called “pandemic clones”, the majority of which belong to serotype O3:K6, have caused worldwide outbreaks of gastroenteritis. In this study, we used a DNA microarray constructed based on the genome sequence of a pandemic V. parahaemolyticus strain RIMD2210633 to examin the genomic composition of 22 strains of V. parahaemolyticus, including both pathogenic (pandemic as well as non-pandemic) and non-pathogenic strains. Over 85% of the RIMD2210633 genes were conserved in all the strains tested. Many of variably present genes formed gene clusters on the genome of RIMD2210633 and were probably acquired through lateral gene transfer. At least 70 genes over 10 loci were specifically present in the pandemic strains when compared with any of the non-pandemic strains, suggesting that the difference between pandemic and non-pandemic strains is not due to a simple genetic event. Only the genes in the 80-kb pathogenicity island (Vp-PAI) on chromosome II, including two tdh genes and a set of genes for the Type III secretion system, were detected only in the KP-positive pathogenic strains. These results strongly suggest that acquisition of this Vp-PAI was crucial for the emergence of V. parahaemolyticus strains that are pathogenic for humans. Keywords: comparative genomic hybridization, CGH
Project description:Identification of Genes and Genomic Islands Correlated with High Pathogenicity through Tilling Microarray-Based Comparative Genomics in S. suis. Streptococcus suis is an important zoonotic pathogen that can cause meningitis and sepsis in both pigs and humans. S. suis isolates have been categorized into groups of different levels of pathogenicity, with sequence type (ST) ST1 clonal complex strains having a higher degree of virulence than other STs. However, the genetic basis of the differences in pathogenicity is still poorly understood. In this study, a comprehensive genomic comparison of 31 S. suis strains from different clinical sources with the genome sequence of the high pathogenicity (HP) strain GZ1 was conducted using NimbleGen’s tilling microarray platform.