Project description:This study examines whether maternal low ω6:ω3 ratio diet and offspring seaweed (SW) supplementation can improve offspring immunity and performance by elucidating the effects on piglet serum proteome. A total of 16 sows were given either a standard (CR, 13:1) or low ω6:ω3 ratio diet (LR, 4:1) during pregnancy and lactation and their male weaned piglets were supplemented with SW powder (4 g/kg, SW) or not (CT) in a 21-day post-weaning (PW) diet. Four PW piglet groups were then identified based on dam and piglet treatment, namely CRCT, CRSW, LRCT, and LRSW (n = 10 each). Piglet serum collected at weaning and d21 PW were analyzed (n = 5 each) using TMT-based quantitative proteomics and validated by appropriate assays.
Project description:Aims: Epidemiological and animal studies have shown that maternal diet can influence metabolism in adult offspring. However, the molecular mechanisms underlying these changes remain poorly understood. Here, we aim to explore phenotypes induced by maternal obesity in a mouse model and examine gene expression and epigenetic alterations in adulthood induced by maternal diet. Methods: We analyzed genetically identical male mice born from dams fed a high- or low-fat diet throughout pregnancy and until day 21 postpartum. After weaning, half of the males of each group were fed a high-fat diet, the other half a low-fat diet. We first characterized the genome-wide gene expression patterns of six tissues of adult offspring - liver, pancreas, white adipose, brain, muscle and heart [GSE40903] . We then measured DNA methylation patterns in liver at selected loci and throughout the genome. Results: Maternal diet had a significant effect on the body weight of the offspring when they are fed an obesogenic diet after weaning. Our analyses showed that maternal diet had a pervasive effect on gene expression, with a pronounced effect in liver where it affected many genes involved in inflammation, cholesterol synthesis and RXR activation. Maternal diet had no detectable effect on DNA methylation in the liver. Conclusions: Overall, our findings highlighted the persistent influence of maternal diet on adult tissue regulation and suggested that the transcriptional changes were unlikely to be caused by DNA methylation differences in adult liver. Methylation is compared between nine week old animals fed a common diet as adults, but derived from mothers fed different diets.
Project description:Aims: Epidemiological and animal studies have shown that maternal diet can influence metabolism in adult offspring. However, the molecular mechanisms underlying these changes remain poorly understood. Here, we aim to explore phenotypes induced by maternal obesity in a mouse model and examine gene expression and epigenetic alterations in adulthood induced by maternal diet. Methods: We analyzed genetically identical male mice born from dams fed a high- or low-fat diet throughout pregnancy and until day 21 postpartum. After weaning, half of the males of each group were fed a high-fat diet, the other half a low-fat diet. We first characterized the genome-wide gene expression patterns of six tissues of adult offspring - liver, pancreas, white adipose, brain, muscle and heart [GSE40903] . We then measured DNA methylation patterns in liver at selected loci and throughout the genome. Results: Maternal diet had a significant effect on the body weight of the offspring when they are fed an obesogenic diet after weaning. Our analyses showed that maternal diet had a pervasive effect on gene expression, with a pronounced effect in liver where it affected many genes involved in inflammation, cholesterol synthesis and RXR activation. Maternal diet had no detectable effect on DNA methylation in the liver. Conclusions: Overall, our findings highlighted the persistent influence of maternal diet on adult tissue regulation and suggested that the transcriptional changes were unlikely to be caused by DNA methylation differences in adult liver. Methylation is compared between nine week old animals fed a common diet as adults, but derived from mothers fed different diets. Sequence of PCR amplification of bisulfite converted genomic DNA of numerous loci
Project description:This study mapped the genome wide DNA methylation changes in CD3+ T lymphocytes from rhesus monkeys from postnatal day 14 through two years of age in both males and females and determined the impact of maternal deprivation on the DNA methylation profile. We show here that DNA methylation profiles evolve from birth to adolescence and are sex dependent. DNA methylation changes accompany imposed weaning, attenuating the difference between males and females. Altogether 71 T cell DNA samples were used in 4 different groups (male control, male stress, female control, female stress) at 4 different developmental stage (1 month, before weaning at 6-7 months, after weaning at 9-10 months, and after 2 years at 26-30 months) having 3-6 samples per each group. The DNA samples were pooled in each group and then subjected to Whole Genome Amplification in triplicates.
Project description:This study mapped the genome wide DNA methylation changes in CD3+ T lymphocytes from rhesus monkeys from postnatal day 14 through two years of age in both males and females and determined the impact of maternal deprivation on the DNA methylation profile. We show here that DNA methylation profiles evolve from birth to adolescence and are sex dependent. DNA methylation changes accompany imposed weaning, attenuating the difference between males and females.
Project description:Aging is a progressive process that results in the accumulation of intra- and extracellular alterations that in turn contribute to a reduction in health. Age-related changes in DNA methylation have been reported before and may be responsible for aging-induced changes in gene expression, although a causal relationship has yet to be shown. Using genome-wide assays, we analyzed age-induced changes in DNA methylation and their effect on gene expression with and without transient induction with the synthetic transcription modulating agent WY14,643. To demonstrate feasibility of the approach, we isolated peripheral blood mononucleated cells (PBMCs) from five young and five old healthy male volunteers and cultured them with or without WY14,643. Infinium 450K BeadChip and Affymetrix Human Gene 1.1 ST expression array analysis revealed significant differential methylation of at least 5 % (M-NM-^TYOM-bM-^@M-^I>M-bM-^@M-^I5 %) at 10,625 CpG sites between young and old subjects, but only a subset of the associated genes were also differentially expressed. Age-related differential methylation of previously reported epigenetic biomarkers of aging including ELOVL2, FHL2, PENK, and KLF14 was confirmed in our study, but these genes did not display an age-related change in gene expression in PBMCs. Bioinformatic analysis revealed that differentially methylated genes that lack an age-related expression change predominantly represent genes involved in carcinogenesis and developmental processes, and expression of most of these genes were silenced in PBMCs. No changes in DNA methylation were found in genes displaying transiently induced changes in gene expression. In conclusion, aging-induced differential methylation often targets developmental genes and occurs mostly without change in gene expression. Peripheral blood mononuclear cells were isolated from 10 volunteers (5 young 5 old), treated with the synthetic PPARalpha agonists WY14,643 or control for 13 hrs, and subjected to genome-wide DNA methylation and gene expression analysis. This entry contains the DNA methylation data.
Project description:Aging is a progressive process that results in the accumulation of intra- and extracellular alterations that in turn contribute to a reduction in health. Age-related changes in DNA methylation have been reported before and may be responsible for aging-induced changes in gene expression, although a causal relationship has yet to be shown. Using genome-wide assays, we analyzed age-induced changes in DNA methylation and their effect on gene expression with and without transient induction with the synthetic transcription modulating agent WY14,643. To demonstrate feasibility of the approach, we isolated peripheral blood mononucleated cells (PBMCs) from five young and five old healthy male volunteers and cultured them with or without WY14,643. Infinium 450K BeadChip and Affymetrix Human Gene 1.1 ST expression array analysis revealed significant differential methylation of at least 5 % (ΔYO > 5 %) at 10,625 CpG sites between young and old subjects, but only a subset of the associated genes were also differentially expressed. Age-related differential methylation of previously reported epigenetic biomarkers of aging including ELOVL2, FHL2, PENK, and KLF14 was confirmed in our study, but these genes did not display an age-related change in gene expression in PBMCs. Bioinformatic analysis revealed that differentially methylated genes that lack an age-related expression change predominantly represent genes involved in carcinogenesis and developmental processes, and expression of most of these genes were silenced in PBMCs. No changes in DNA methylation were found in genes displaying transiently induced changes in gene expression. In conclusion, aging-induced differential methylation often targets developmental genes and occurs mostly without change in gene expression.
Project description:Aging is a progressive process that results in the accumulation of intra- and extracellular alterations that in turn contribute to a reduction in health. Age-related changes in DNA methylation have been reported before and may be responsible for aging-induced changes in gene expression, although a causal relationship has yet to be shown. Using genome-wide assays, we analyzed age-induced changes in DNA methylation and their effect on gene expression with and without transient induction with the synthetic transcription modulating agent WY14,643. To demonstrate feasibility of the approach, we isolated peripheral blood mononucleated cells (PBMCs) from five young and five old healthy male volunteers and cultured them with or without WY14,643. Infinium 450K BeadChip and Affymetrix Human Gene 1.1 ST expression array analysis revealed significant differential methylation of at least 5 % (ΔYO > 5 %) at 10,625 CpG sites between young and old subjects, but only a subset of the associated genes were also differentially expressed. Age-related differential methylation of previously reported epigenetic biomarkers of aging including ELOVL2, FHL2, PENK, and KLF14 was confirmed in our study, but these genes did not display an age-related change in gene expression in PBMCs. Bioinformatic analysis revealed that differentially methylated genes that lack an age-related expression change predominantly represent genes involved in carcinogenesis and developmental processes, and expression of most of these genes were silenced in PBMCs. No changes in DNA methylation were found in genes displaying transiently induced changes in gene expression. In conclusion, aging-induced differential methylation often targets developmental genes and occurs mostly without change in gene expression.