Project description:Studies of the gene expression profiles associated with the postnatal late growth, development and aging of skeletal muscle are lacking in sika deer. To understand the molecular mechanisms of the growth and development of sika deer skeletal muscle, we used de novo RNA-seq analyses to determine the differential expression of unigenes from skeletal muscle tissues at 1, 3, 5, and 10-year-old in sika deer. A total of 51716 unigenes were identified based on four mRNA libraries. 2044 unigenes were differentially expressed between adolescence and juvenile sika deer, 1946 unigenes were differentially expressed between adult and adolescence sika deer, and 2209 unigenes were differentially expressed between aged and adult sika deer. GO and KEGG analyses showed that DE unigenes were mainly related to energy and substance metabolism, processes that are closely associate with growth, development and aging of skeletal muscle. We also constructed mRNA-mRNA interaction networks related to growth, development and aging of skeletal muscle. The results showed that Myh1, Myh2, Myh7, ACTN3 etc. may play important roles in muscle growth and development, and WWP1, DEK, UCP3, FUS etc. may have key roles in muscle aging. In this study, we determined the dynamic unigenes transcriptome in muscle tissue for the first time in sika deer. The age-dependent unigenes identified will offer insights into the molecular mechanism underlying muscle development, growth and maintenance and also provide valuable information for sika deer genetic breeding.
Project description:Studies of the miRNA expression profiles associated with the postnatal late growth, development and aging of skeletal muscle are lacking in sika deer. To understand the molecular mechanisms of the growth and development of sika deer skeletal muscle, we used de novo RNA-seq analyses to determine the differential expression of miRNAs from skeletal muscle tissues at 1, 3, 5, and 10-year-old in sika deer. A total of 171 known miRNAs and 60 novel miRNAs were identified based on four small RNA libraries. 11 miRNAs were differentially expressed between adolescence and juvenile sika deer, 4 miRNAs were differentially expressed between adult and adolescence sika deer, and 1 miRNAs were differentially expressed between aged and adult sika deer. GO and KEGG analyses showed that miRNA were mainly related to energy and substance metabolism, processes that are closely associate with growth, development and aging of skeletal muscle. We also constructed mRNA-mRNA and miRNA-mRNA interaction networks related to growth, development and aging of skeletal muscle. The results showed that miR-133a, miR-133c, miR-192, miR-151-3p etc. may play important roles in muscle growth and development, and miR-17-5p, miR-378b, miR-199a-5p, miR-7 etc. may have key roles in muscle aging. In this study, we determined the dynamic miRNA in muscle tissue for the first time in sika deer. The age-dependent miRNAs identified will offer insights into the molecular mechanism underlying muscle development, growth and maintenance and also provide valuable information for sika deer genetic breeding.
Project description:The Chinese forest musk deer (FMD; Moschus berezovskii) is an endangered artiodactyl mammal. Musk secreted by the musk gland of male FMD has extremely high economic and medicinal value. At present, little is known about the development of musk glands and the molecular mechanism of musk secretion. In the present research, using snRNA-seq and snATAC-seq association analysis performed on musk glands of forest musk deer, coupled with several bioinformatics analyses, the dynamic transcriptional cell atlas of musk gland development was revealed and the genes and transcription factors affecting musk secretion were determined. Based on uniform manifold approximation and projection (UMAP) analysis, we identified 12 cell types from musk glands, including two different acinar cells (clusters 0 and 10). In addition, the expression of core target genes and core transcription factors was verified by fluorescence in situ hybridization and immunohistochemistry. Combined with weighted gene co-expression network analysis (WGCNA), we obtained a deeper biological understanding of the relationship between core transcription factors, differentially expressed genes and musk secretion related pathways. This study lays a foundation for improving musk yield and meeting market demand. In the meantime, it also contributes to reducing the hunting and poaching of wild forest musk deer, protecting forest musk deer resources and maintaining ecological balance.
Project description:An Infinium microarray platform (GPL28271, HorvathMammalMethylChip40) was used to generate DNA methylation data from blood samples of roe deer n=94 blood samples
Project description:we used proteomic technology to disclose the difference of antler regeneration between red deer and sika deer. Through functional analysis, we obtained differentially expressed proteins and the pathway involved in antler regeneration between two groups