Project description:The aim of the study was to carry out a CGH study utilizing a set of 39 diverse Bacillus isolates. Thirty four B. cereus and five B. anthracis strains and isolates were chosen so as to represent different lineages based on previous characterizations, including MLEE and MLST (Helgason, Okstad et al. 2000; Helgason, Tourasse et al. 2004). They represent the spectrum of B. cereus phenotypic diversity by including soil, dairy and periodontal isolates in addition to virulent B. anthracis strains.
Project description:Branching coral species like the Caribbean Acroporids are long lived and reproduce asexually via breakage of branches. Fragmentation is the dominant mode of local population maintenance for these corals across much of their range. Thus, large genets with many member ramets (colonies) are common. Each of the ramets experiences different microenvironments, especially with respect to light and water flow. Here, we investigate whether colonies that are members of the same genet have different epigenomes because of differences in their microenvironments. The Florida Keys experienced a large- scale coral bleaching event in 2014-2015 caused by high water temperatures. During the event, ramets of the same coral genet bleached differently. Previous work had shown that this was unlikely to be due to their eukaryotic algal symbionts (Symbiodinium ‘fitti’) because each genet of this coral species typically harbors a single strain of S. ‘fitti’. Characterization of the microbiome via 16S tag sequencing did not provide evidence for a central role of microbiome variation in determining bleaching response. Instead, epigenetic changes were significantly correlated with the host’s genetic background, the position of the sampled polyps within the colonies (e.g. tip versus base of colony), and differences in the colonies’ condition during the bleaching event. We conclude that microenvironmental differences in growing conditions led to long-term changes in the way the ramets methylated their genomes and thus to a differential bleaching response.
Project description:Branching coral species like the Caribbean Acroporids are long lived and reproduce asexually via breakage of branches. Fragmentation is the dominant mode of local population maintenance for these corals across much of their range. Thus, large genets with many member ramets (colonies) are common. Each of the ramets experiences different microenvironments, especially with respect to light and water flow. Here, we investigate whether colonies that are members of the same genet have different epigenomes because of differences in their microenvironments. The Florida Keys experienced a large- scale coral bleaching event in 2014-2015 caused by high water temperatures. During the event, ramets of the same coral genet bleached differently. Previous work had shown that this was unlikely to be due to their eukaryotic algal symbionts (Symbiodinium ‘fitti’) because each genet of this coral species typically harbors a single strain of S. ‘fitti’. Characterization of the microbiome via 16S tag sequencing did not provide evidence for a central role of microbiome variation in determining bleaching response. Instead, epigenetic changes were significantly correlated with the host’s genetic background, the position of the sampled polyps within the colonies (e.g. tip versus base of colony), and differences in the colonies’ condition during the bleaching event. We conclude that microenvironmental differences in growing conditions led to long-term changes in the way the ramets methylated their genomes and thus to a differential bleaching response.
Project description:The bacterial pathogen Vibrio coralliilyticus infects a variety of marine organisms globally and causes early onset of disease in multiple coral species. The etiology of coral disease and relative pathogenicity of V. coralliilyticus strains is well-documented, but the mechanisms of V. coralliilyticus coral colonization, virulence factor production, and interactions with coral microbiome are understudied. Many virulence factors responsible for pathogenic behaviors are controlled through a density-dependent, bacterial communication system called quorum sensing (QS). In other Vibrio species, behaviors like bioluminescence, biofilm formation, toxin secretion, and protease production are controlled via the master quorum sensing transcriptional regulator called LuxR/HapR. Comparative genomics indicated that V. coralliilyticus genomes share high sequence identity for most of the QS signaling and regulatory components identified in other Vibrio species. Here, we characterize active components of the V. coralliilyticus QS system and identify the VcpR (LuxR/HapR homolog) regulons in two strains with distinct infection etiologies. We show that VcpR transcription is dependent on signaling by autoinducer AI-2, whereas we were unable to detect production of acyl-homoserine lactone autoinducers. The VcpR regulator controls expression of >200 genes in both the type strain BAA-450 and isolate OCN008, including two genes encoding proteases (VcpA and VcpB) known to impact coral infection. In both isolates, VcpR activates the expression of Type VI Secretion System genes from both systems 1 and 2, which results in interbacterial competition and killing of prey bacteria. We conclude that the QS system in V. coralliilyticus is active and controls expression of genes involved in relevant bacterial behaviors that may influence coral infection.
Project description:Root exudates play an important role in plant-microbe interaction. The transcriptional profilings of plant growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9 in response to maize root exudates under static condition, were investigated by an Illumina RNA-seq for understanding the regulatory roles of the root exudates.
Project description:iTRAQ were used to analyze the difference in total protein expression levels of cultured strains after culturing with sucrose or mannitol
Project description:To establish the protein expression profile of Ba168, a high-resolution LC-MS/MS proteomic analysis was performed. A total of 1155 proteins were identified from 5233 unique peptides. GO and KEGG analysis revealed that a majority of the proteins were associated with biosynthesis and carbon metabolism pathways, such as biosynthesis of amino acids, peptidoglycan, and antibiotics. Then, we identified the antimicrobial proteins of Ba168. At least 16 potential antimicrobial-activity-related proteins were identified; 11 of these proteins have direct antimicrobial effects, while 5 of these proteins are associated with the formation of antimicrobial substances.