Project description:Broad-host root endophytes establish long-term interactions with a large variety of plants, thereby playing a significant role in natural and managed ecosystems and in evolution of land plants. To exploit plants as living substrates and to establish a compatible interaction with morphologically and biochemically extremely different hosts, endophytes must respond and adapt to different plant signals and host metabolic states. Here we identified host-adapted colonization strategies and host-specific effector candidates of the mutualistic root endophyte Piriformospora indica by a global investigation of fungal transcriptional responses to barley and Arabidopsis at different symbiotic stages. Additionally we examined the role played by nitrogen in these two diverse associations. Cytological studies and colonization analyses of a barley mutant and fungal RNAi strains show that distinct physiological and metabolic signals regulate host-specific lifestyle in P. indica. This is the foundation for exploring how distinct fungal and host symbiosis determinants modulate biotrophy in one host and saprotrophy in another host and, ultimately, gives hints into the mechanisms underlying host adaptation in root symbioses.
Project description:Broad-host root endophytes establish long-term interactions with a large variety of plants, thereby playing a significant role in natural and managed ecosystems and in evolution of land plants. To exploit plants as living substrates and to establish a compatible interaction with morphologically and biochemically extremely different hosts, endophytes must respond and adapt to different plant signals and host metabolic states. Here we identified host-adapted colonization strategies and host-specific effector candidates of the mutualistic root endophyte Piriformospora indica by a global investigation of fungal transcriptional responses to barley and Arabidopsis at different symbiotic stages. Additionally we examined the role played by nitrogen in these two diverse associations. Cytological studies and colonization analyses of a barley mutant and fungal RNAi strains show that distinct physiological and metabolic signals regulate host-specific lifestyle in P. indica. This is the foundation for exploring how distinct fungal and host symbiosis determinants modulate biotrophy in one host and saprotrophy in another host and, ultimately, gives hints into the mechanisms underlying host adaptation in root symbioses. Arabidopsis and barley roots were inoculated with Piriformospora indica and grown for 14 days. Additionally P. indica was grown on 1/10 PNM medium alone. Samples were taken 3 and 14 dpi (Arabidopsis), 14 dpi (barley) and 3dpi (1/10 PNM). Each experiment was performed in three independent biological repetitions. Piriformospora indica gene expression examined only.
Project description:Two potato cultivars, Russet Burbank and Bionta, were inoculated with three different endophytes containing different AHL types. The impact of the endophytes to the different cultivars was measured by gene expression analysis with a customized microarray