Project description:CpG methylation by the de novo DNA methyltransferases (DNMTs) 3A and 3B is essential for mammalian development and differentiation and is frequently dysregulated in cancer1. These two DNMTs preferentially bind to nucleosomes yet cannot methylate the DNA wrapped around the nucleosome core2, and favor the methylation of linker DNA at positioned nucleosomes3,4. Here we present the cryo-EM structure of a ternary complex of catalytically competent DNMT3A2, the catalytically inactive accessory subunit DNMT3B3, and a nucleosome core particle flanked by linker DNA. The catalytic-like domain of the accessory DNMT3B3 binds the acidic patch of the nucleosome core, which orients the binding of DNMT3A2 to the linker DNA. The steric constraints of this arrangement suggest that nucleosomal DNA must be moved relative to the nucleosome core for de novo methylation to occur. CpG methylation by the de novo DNA methyltransferases (DNMTs) 3A and 3B is essential for mammalian development and differentiation and is frequently dysregulated in cancer1. These two DNMTs preferentially bind to nucleosomes yet cannot methylate the DNA wrapped around the nucleosome core2, and favor the methylation of linker DNA at positioned nucleosomes3,4. Here we present the cryo-EM structure of a ternary complex of catalytically competent DNMT3A2, the catalytically inactive accessory subunit DNMT3B3, and a nucleosome core particle flanked by linker DNA. The catalytic-like domain of the accessory DNMT3B3 binds the acidic patch of the nucleosome core, which orients the binding of DNMT3A2 to the linker DNA. The steric constraints of this arrangement suggest that nucleosomal DNA must be moved relative to the nucleosome core for de novo methylation to occur.
Project description:CpG methylation by the de novo DNA methyltransferases (DNMTs) 3A and 3B is essential for mammalian development and differentiation and is frequently dysregulated in cancer1. These two DNMTs preferentially bind to nucleosomes yet cannot methylate the DNA wrapped around the nucleosome core2, and favor the methylation of linker DNA at positioned nucleosomes3,4. Here we present the cryo-EM structure of a ternary complex of catalytically competent DNMT3A2, the catalytically inactive accessory subunit DNMT3B3, and a nucleosome core particle flanked by linker DNA. The catalytic-like domain of the accessory DNMT3B3 binds the acidic patch of the nucleosome core, which orients the binding of DNMT3A2 to the linker DNA. The steric constraints of this arrangement suggest that nucleosomal DNA must be moved relative to the nucleosome core for de novo methylation to occur.
Project description:We quantified the targets and kinetics of DNA methylation acquisition in mouse embryos, and determined the contribution of the de novo methyltransferases DNMT3A and DNMT3B to this process. We provide single-base maps of cytosine methylation by RRBS from the blastocysts to post-implantation stages and in embryos lacking DNMT3A or DNMT3B activity, and performed RNA-Seq in embryos lacking DNMT3B activity. We sequenced RRBS libraries prepared from genomic DNA isolated from embryos at consecutive stages of development between E3.5 and E11.5,and adult differentiated cells (sperm, liver). We performed RRBS on blastocysts at E3.5/E4.5, dissected epiblasts at E5.5/E6.5/E7/5, whole embryos at E8.5/E10.5 and limbs at E11.5. RRBS experiments in Dnmt3a-/- and Dnmt3b-/- embryos were performed in biological duplicates on individual embryos. We sequenced RNA-Seq libraries prepared from total RNAs of three WT and Dnmt3b-/- littermate embryos collected at E8.5.
Project description:We quantified the targets and kinetics of DNA methylation acquisition in mouse embryos, and determined the contribution of the de novo methyltransferases DNMT3A and DNMT3B to this process. We provide single-base maps of cytosine methylation by RRBS from the blastocysts to post-implantation stages and in embryos lacking DNMT3A or DNMT3B activity, and performed RNA-Seq in embryos lacking DNMT3B activity.
Project description:DNA methylation is an epigenetic modification associated with transcriptional repression of promoters and is essential for mammalian development. Establishment of DNA methylation is mediated by the de novo DNA methyltransferases DNMT3A and DNMT3B, whereas DNMT1 ensures maintenance of methylation through replication. Absence of these enzymes is lethal, and somatic mutations in these genes have been associated with several human diseases. How genomic DNA methylation patterns are regulated remains poorly understood, as the mechanisms that guide recruitment and activity of DNMTs in vivo are largely unknown. To gain insights into this matter we determined chromosomal binding and site-specific activity of the mammalian de novo DNA methyltransferases DNMT3A and DNMT3B. We show that both enzymes localize to methylated, CpG dense regions in mouse stem cells, yet are excluded from active promoters and enhancers. By specifically measuring sites of de novo methylation, we observe that enzymatic activity reflects chromosomal binding. De novo methylation increases with CpG density, yet is excluded from nucleosomes. Notably, we observed selective binding of DNMT3B to the bodies of transcribed genes, which leads to their preferential methylation. This targeting to transcribed sequences requires SETD2-mediated methylation of lysine 36 on histone H3 and a functional PWWP domain of DNMT3B. Together these findings reveal how sequence and chromatin cues guide de novo methyltransferase activity to ensure methylome integrity. Genome-wide binding analysis for biotin-tagged DNMT3A2 and DNMT3B and variants in wild type ES, wild type neuroprogenitor cells, ES cells triple-KO for Dnmt1,3a,3b and ES cell mutant for Setd2
Project description:This SuperSeries is composed of the SubSeries listed below. DNA methylation is an epigenetic modification associated with transcriptional repression of promoters and is essential for mammalian development. Establishment of DNA methylation is mediated by the de novo DNA methyltransferases DNMT3A and DNMT3B, whereas DNMT1 ensures maintenance of methylation through replication. Absence of these enzymes is lethal, and somatic mutations in these genes have been associated with several human diseases. How genomic DNA methylation patterns are regulated remains poorly understood, as the mechanisms that guide recruitment and activity of DNMTs in vivo are largely unknown. To gain insights into this matter we determined chromosomal binding and site-specific activity of the mammalian de novo DNA methyltransferases DNMT3A and DNMT3B. We show that both enzymes localize to methylated, CpG dense regions in mouse stem cells, yet are excluded from active promoters and enhancers. By specifically measuring sites of de novo methylation, we observe that enzymatic activity reflects chromosomal binding. De novo methylation increases with CpG density, yet is excluded from nucleosomes. Notably, we observed selective binding of DNMT3B to the bodies of transcribed genes, which leads to their preferential methylation. This targeting to transcribed sequences requires SETD2-mediated methylation of lysine 36 on histone H3 and a functional PWWP domain of DNMT3B. Together these findings reveal how sequence and chromatin cues guide de novo methyltransferase activity to ensure methylome integrity. Refer to individual Series
Project description:DNA methylation is an epigenetic modification associated with transcriptional repression of promoters and is essential for mammalian development. Establishment of DNA methylation is mediated by the de novo DNA methyltransferases DNMT3A and DNMT3B, whereas DNMT1 ensures maintenance of methylation through replication. Absence of these enzymes is lethal, and somatic mutations in these genes have been associated with several human diseases. How genomic DNA methylation patterns are regulated remains poorly understood, as the mechanisms that guide recruitment and activity of DNMTs in vivo are largely unknown. To gain insights into this matter we determined chromosomal binding and site-specific activity of the mammalian de novo DNA methyltransferases DNMT3A and DNMT3B. We show that both enzymes localize to methylated, CpG dense regions in mouse stem cells, yet are excluded from active promoters and enhancers. By specifically measuring sites of de novo methylation, we observe that enzymatic activity reflects chromosomal binding. De novo methylation increases with CpG density, yet is excluded from nucleosomes. Notably, we observed selective binding of DNMT3B to the bodies of transcribed genes, which leads to their preferential methylation. This targeting to transcribed sequences requires SETD2-mediated methylation of lysine 36 on histone H3 and a functional PWWP domain of DNMT3B. Together these findings reveal how sequence and chromatin cues guide de novo methyltransferase activity to ensure methylome integrity. Whole-genome bisulfite sequencing for Dnmt1,3a,3b-triple-KO ES cells expressing DNMT3A2 or DNMT3B1 and for Dnmt1,3a,3b,Setd2-KO ES cells expressing DNMT3B1
Project description:The DNA methylation program is at the bottom layer of the epigenetic regulatory cascade of vertebrate development. While the methylation at C-5 position of the cytosine (C) residues on the vertebrate genomes is achieved through the catalytic activities of the DNA methyltransferases (DNMTs), the conversion of the methylated cytosine (5mC) could be accomplished by the combined actions of the TET enzyme and DNA repair. Interestingly, it has been found recently that the mouse and human DNMTs also possess active DNA demethylation activity in vitro in a Ca2+- and redox condition-dependent manner. We report here the study of tracking down the fate of the methyl group removed from 5mC on DNA during in vitro demethylation reaction by mouse de novo DNMTs, i.e. DNMT3A and DNMT3B. Remarkably, the methyl group becomes covalently linked to the catalytic cysteines utilized by the two de novo DNMTs in their DNA methylation reactions. Thus, the forward and reverse reactions of DNA methylations by the DNMTs may utilize the same cysteine residue(s) as the active site despite of their distinctive pathways. Secondly, we demonstrate that active DNA demethylation of a heavily methylated GFP reporter plasmid by ectopically expressed DNMT3A or DNMT3B occurs in vivo in transfected human HEK 293 cells in culture. Furthermore, the extent of DNA demethylation by the DNMTs in this cell-based system is affected by Ca2+ homeostasis as well as by mutation of their putative active cysteines. These findings substantiate the roles of the vertebrate DNMTs as double-edged swords in DNA methylation-demethylation in vitro as well as in a cellular context.