Project description:Monocytes are central for atherosclerotic vascular inflammation. The human non-classical, patrolling subtype, which expresses high levels of CD16 and fractalkine receptor CX3CR1, strongly associates with cardiovascular events. Compared to classical CD14+ monocytes or transwell cocultures, CD16+ monocytes enhanced endothelial STAT1 and NFκB p65 phosphorylation, upregulated expression of CX3CL1 and IL-1β, numerous CCL and CXCL chemokines and molecules promoting leukocyte patrolling and adhesion such as ICAM1 and VCAM1.
Project description:The response of endothelial cells to the tissue environment has a critical impact on their function in inflammation and tumors. In particular, cytokine stimulation such as TNFa, IL-4, IFNg, and LTbR induces gene expression changes, which significantly impact endothelial cell function and differentiation. To understand the degree of gene expression change, we performed a transcriptome analysis of HUVEC.
Project description:Comparison of mRNA expression in human EPC vs. HUVEC vs. human monocytes. Cell-type specific gene expression under basal cell culture conditions (no stimulation). The hybridization was performed with three samples of EPC vs. three samples of HUVEC vs. 3 samples of CD14+ monocytes. • The origin of the biological sample: Human endothelial progenitor cells (EPC): EPC were ex vivo cultivated from human peripheral blood-derived mononuclear cells (PBMC). PBMC were isolated by density gradient centrifugation from healthy human volunteers as previously described (Dimmeler et al., 2001). Pooled human umbilical vein endothelial cells (HUVEC) were purchased from Cambrex (Verviers, Belgium). CD14+ monocytes were purified from PBMC by positive selection with anti-CD14-microbeads (Miltenyi Biotec, Bergisch-Gladbach, Germany). Purity assessed by FACS analysis was greater than 95%. • Manipulation of biological samples and protocols used: for example, growth conditions, treatments, separation techniques: EPC: 8000000 PBMC/ml were plated on human fibronectin (Sigma, Taufkirchen, Germany) and maintained in endothelial basal medium (Cambrex) with EGM SingleQuots and 20% fetal calf serum (FCS). After 3 days, nonadherent cells were removed and adherent cells were incubated in fresh medium for 24 h before starting experiments. HUVEC: HUVEC were cultured in endothelial basal medium (Cambrex) supplemented with hydrocortisone, bovine brain extract, gentamicin, amphotericin B, epidermal growth factor, and 10% FCS until the third passage according to the manufacturer’s recommendations. CD14+ monocytes: No culture. • Protocol for preparing the hybridization extract: for example, the RNA or DNA extraction and purification protocol. Total RNA was extracted from EPC, HUVEC, and CD14+ monocytes using the RNeasy cleanup system (Qiagen, Hilden, Germany) according to the manufacturer's protocol. Quantity and quality of total RNA was analyzed by the 2100 Bioanalyzer system (Agilent Technologies, Waldbronn, Germany) and agarose gel electrophoresis. • Labeling protocol(s): The detailed protocol for the sample preparation and microarray processing is available from Affymetrix (Santa Clara, CA). Briefly, 10 µg of purified total RNA was reverse transcribed by Superscript II reverse transcriptase (Life Technologies, Grand Island, NY) using T7-(dT)24 primer containing a T7 RNA polymerase promoter. After synthesis of the second complementary DNA (cDNA) strand, this product was used in an in vitro transcription reaction to generate biotinylated complementary RNA (cRNA). • The protocol and conditions used during hybridization, blocking and washing: Fifteen micrograms of fragmented, biotinylated cRNA were hybridized to a HG-U95Av2 microarray (Affymetrix Inc.) for 16 hours at 45° C with constant rotation at 60 rpm. This high-density oligonucleotide array targets 9,670 human genes as selected from the National Center for Biotechnology Information (NCBI) Gene Bank database with a total of 12,000 oligonucleotide sets. Each microarray was used to assay a single sample. After hybridization, the microarray was washed and stained on an Affymetrix fluidics station and scanned with an argon-ion confocal laser, with a 488 nm emission and detection at 570 nm. • GeneChip image analysis was performed using the Microarray Analysis Suite 5.0 (Affymetrix, Inc.). Expression data were analyzed utilizing the GeneSpring™ software version 4.2 (Silicon Genetics Inc., San Carlos, CA). Keywords: parallel sample
Project description:HUVEC were left untreated or stimulated for 5h with 2 ng/ml TNF. Comparsion of the gene profiles revealed TNF-mediated gene expression changes in HUVEC. Keywords: parallel sample
Project description:The expression profile of HUVEC in response to IgG or HECD-1 treated exosomes We used data from this array to identify differentiatly expressed genes.
Project description:Comparison of mRNA expression in human EPC vs. HUVEC vs. human monocytes. Cell-type specific gene expression under basal cell culture conditions (no stimulation). The hybridization was performed with three samples of EPC vs. three samples of HUVEC vs. 3 samples of CD14+ monocytes. â?¢ The origin of the biological sample:; Human endothelial progenitor cells (EPC): EPC were ex vivo cultivated from human peripheral blood-derived mononuclear cells (PBMC). PBMC were isolated by density gradient centrifugation from healthy human volunteers as previously described (Dimmeler et al., 2001). Pooled human umbilical vein endothelial cells (HUVEC) were purchased from Cambrex (Verviers, Belgium). CD14+ monocytes were purified from PBMC by positive selection with anti-CD14-microbeads (Miltenyi Biotec, Bergisch-Gladbach, Germany). Purity assessed by FACS analysis was greater than 95%. â?¢ Manipulation of biological samples and protocols used: for example, growth conditions, treatments, separation techniques:; EPC:; 8000000 PBMC/ml were plated on human fibronectin (Sigma, Taufkirchen, Germany) and maintained in endothelial basal medium (Cambrex) with EGM SingleQuots and 20% fetal calf serum (FCS). After 3 days, nonadherent cells were removed and adherent cells were incubated in fresh medium for 24 h before starting experiments. HUVEC:; HUVEC were cultured in endothelial basal medium (Cambrex) supplemented with hydrocortisone, bovine brain extract, gentamicin, amphotericin B, epidermal growth factor, and 10% FCS until the third passage according to the manufacturerâ??s recommendations. CD14+ monocytes: No culture. â?¢ Protocol for preparing the hybridization extract: for example, the RNA or DNA extraction and purification protocol. Total RNA was extracted from EPC, HUVEC, and CD14+ monocytes using the RNeasy cleanup system (Qiagen, Hilden, Germany) according to the manufacturer's protocol. Quantity and quality of total RNA was analyzed by the 2100 Bioanalyzer system (Agilent Technologies, Waldbronn, Germany) and agarose gel electrophoresis. â?¢ Labeling protocol(s):; The detailed protocol for the sample preparation and microarray processing is available from Affymetrix (Santa Clara, CA). Briefly, 10 µg of purified total RNA was reverse transcribed by Superscript II reverse transcriptase (Life Technologies, Grand Island, NY) using T7-(dT)24 primer containing a T7 RNA polymerase promoter. After synthesis of the second complementary DNA (cDNA) strand, this product was used in an in vitro transcription reaction to generate biotinylated complementary RNA (cRNA). â?¢ The protocol and conditions used during hybridization, blocking and washing:; Fifteen micrograms of fragmented, biotinylated cRNA were hybridized to a HG-U95Av2 microarray (Affymetrix Inc.) for 16 hours at 45° C with constant rotation at 60 rpm. This high-density oligonucleotide array targets 9,670 human genes as selected from the National Center for Biotechnology Information (NCBI) Gene Bank database with a total of 12,000 oligonucleotide sets. Each microarray was used to assay a single sample. After hybridization, the microarray was washed and stained on an Affymetrix fluidics station and scanned with an argon-ion confocal laser, with a 488 nm emission and detection at 570 nm. â?¢ GeneChip image analysis was performed using the Microarray Analysis Suite 5.0 (Affymetrix, Inc.). Expression data were analyzed utilizing the GeneSpringâ?¢ software version 4.2 (Silicon Genetics Inc., San Carlos, CA).
Project description:Exposure of human monocytes to lipopolysaccharide (LPS) or other pathogen-associated molecular pattern (PAMPs) induces a temporary insensitivity to subsequent LPS challenges, a cellular state called endotoxin tolerance (ET). The tolerant state of monocytes is accompanied by cell surface and other glycoprotein expression changes induced by the activation of Toll-like receptors (TLRs). In this study, we aimed to characterize the cellular state of human monocytes stimulated with Gram-positive Staphylococcus aureus and TLR2 ligands. We analyzed gene expression changes induced by S. aureus after 2 and 24 hours by amplicon sequencing (RNA-AmpliSeq) and compared the pro-inflammatory response after 2 hours of stimulation to the to the response in re-stimulation experiments after the first stimulus. In parallel, glycoprotein expression changes in human monocytes after 24 hours of S. aureus stimulation were analyzed by proteomics and compared to stimulation experiments with TLR2 ligands Malp-2 and Pam3Cys and TLR4 ligand LPS. The results demonstrate that monocytes stimulated with S. aureus and TLR ligands entered the tolerant cell state after activation. Compared to TLR agonist mediated activation and tolerization of monocytes, glycoprotein expression changes induced by S. aureus stimulation revealed significant differences in receptor expression profiles. We report a glycoprotein expression profile characteristic for PAMP and S. aureus tolerized human monocytes. Finally, we analyzed peripheral blood monocytes of patients with S. aureus bloodstream infection for inflammatory responses in vitro and for their glycoprotein expression profiles. RNA-AmpliSeq data from patient-derived monocytes demonstrated that the cells were pro-inflammatory responsive to S. aureus stimulation and expressed higher level of CD44 mRNA, while other markers of the tolerant cell state were not detected.