Project description:An analysis of the impact of infection by Buchnera aphidicola APS (isolated from Acyrthosiphon pisum strain LL01) on gene expression of S2 cells. All comparisons are made against a pool of RNA from S2 cells not exposed to B. aphidicola. B. aphidicola freshly isolated from the aphids, and data are collected at 1, 6 and 24 hours after exposure of S2 cells to the B. aphidicola preparation. Keywords: time course, Buchnera aphidicola APS, aphids, Drosophila melanogaster S2 cells
Project description:An analysis of the impact of infection by Buchnera aphidicola APS (isolated from Acyrthosiphon pisum strain LL01) on gene expression of S2 cells. All comparisons are made against a pool of RNA from S2 cells not exposed to B. aphidicola. B. aphidicola freshly isolated from the aphids, and data are collected at 1, 6 and 24 hours after exposure of S2 cells to the B. aphidicola preparation. Keywords: time course, Buchnera aphidicola APS, aphids, Drosophila melanogaster S2 cells All comparisons are made against a pool of RNA from S2 cells not exposed to B. aphidicola. B. aphidicola freshly isolated from the aphids, and data are collected at 1, 6 and 24 hours after exposure of S2 cells to the B. aphidicola preparation.
Project description:This study was designed to identify the sRNAs in Aphis gossypii (cotton-melon aphid) during Vat-mediated resistance in teraction with melon
Project description:Buchnera aphidicola is an intracellular bacterial symbiont of aphids and maintains a small genome of only 600 kbps. Buchnera is thought to maintain only genes relevant to the symbiosis with its aphid host. Curiously, the Buchnera genome contains gene clusters coding for flagellum basal body structural proteins and for flagellum type III export machinery. These structures have been shown to be highly expressed and present in large numbers on Buchnera cells. No recognizable pathogenicity factors or secreted proteins have been identified in the Buchnera genome, and the relevance of this protein complex to the symbiosis is unknown. Here, we show isolation of Buchnera flagellum basal body proteins from the cellular membrane of Buchnera, confirming the enrichment of flagellum basal body proteins relative to other proteins in the Buchnera proteome. This will facilitate studies of the structure and function of the Buchnera flagellum structure, and its role in this model symbiosis.