Project description:Single-cell analysis of early erythroid precursors in Rpl11 haploinsufficient mice reveals both heme-dependent and heme-independent pathologies.
Project description:Ineffective erythropoiesis, the death of maturing erythroid cells, is a common cause of anemia. To better understand why this occurs, we studied the fates and adaptations of single erythroid marrow cells from individuals with Diamond Blackfan anemia (DBA), del(5q) myelodysplastic syndrome (del(5q) MDS), and normal controls, and defined an unhealthy (vs. healthy) differentiation trajectory, using velocity pseudotime and cell surface protein assessment. The pseudotime trajectories diverge immediately after the cells upregulate transferrin receptor (CD71), import iron, and initiate heme synthesis, although cell death occurs much later. Cells destined to die highly express heme-responsive genes, including ribosomal protein and globin genes. In contrast, surviving cells downregulate heme synthesis, while upregulating DNA damage response, hypoxia, and HIF1 pathways. Surprisingly, 24±12% of cells from controls follow the unhealthy trajectory, implying that heme also regulates cell fate decisions during normal red cell production. Del(5q) MDS (unlike DBA) results from somatic mutations, so many normal (unmutated) erythroid cells persist. By independently tracking their trajectory, we gained insight into why they cannot expand to prevent anemia. In addition, we show that intron retention is especially prominent during red cell differentiation. The additional information provided by messages with retained introns also allowed us to align data from multiple independent experiments and thus accurately query the transcriptomic changes that occur as single erythroid cells mature.
Project description:SF3B1 deficiency impairs human erythropoiesis via activation of p53 pathway: implications for understanding of ineffective erythropoiesis in MDS
Project description:We aimed to evaluate changes in expression in control and th1/th1 mice treated with PBS and apo-transferrin to understand the effect(s) of exogenous apo-transferrin on normal and ineffective erythropoiesis
Project description:Serotonin (5-HT) has long been recognized as a neurotransmitter in the central nervous system, where it modulates a variety of behavioral functions. Availability of 5-HT depends on the expression of the enzyme tryptophan hydroxylase (TPH), and the recent discovery of a dual system for 5-HT synthesis in the brain (TPH2) and periphery (TPH1) has renewed interest in studying the potential functions played by 5-HT in nonnervous tissues. Moreover, characterization of the TPH1 knockout mouse model (TPH1(-/-)) led to the identification of unsuspected roles for peripheral 5-HT, revealing the importance of this monoamine in regulating key physiological functions outside the brain. Here, we present in vivo data showing that mice deficient in peripheral 5-HT display morphological and cellular features of ineffective erythropoiesis. The central event occurs in the bone marrow where the absence of 5-HT hampers progression of erythroid precursors expressing 5-HT(2A) and 5-HT(2B) receptors toward terminal differentiation. In addition, red blood cells from 5-HT-deficient mice are more sensitive to macrophage phagocytosis and have a shortened in vivo half-life. The combination of these two defects causes TPH1(-/-) animals to develop a phenotype of macrocytic anemia. Direct evidence for a 5-HT effect on erythroid precursors is provided by supplementation of the culture medium with 5-HT that increases the proliferative capacity of both 5-HT-deficient and normal cells. Our thorough analysis of TPH1(-/-) mice provides a unique model of morphological and functional aberrations of erythropoiesis and identifies 5-HT as a key factor for red blood cell production and survival.
Project description:Luspatercept (Reblozyl) was recently approved for treating patients with transfusion-dependent lower-risk myelodysplastic syndrome (MDS) with ring sideroblasts (RS) and/or SF3B1 mutation who were not eligible for erythropoiesis-stimulating agents (ESAs) or patients for whom those agents failed. Luspatercept acts as an activin receptor type IIB fusion protein ligand trap that targets the altered transforming growth factor beta pathway in MDS, which is associated with impaired terminal erythroid maturation. Treatment with luspatercept results in decreased SMAD signaling, which enables erythroid maturation by means of late-stage erythroblast differentiation and thus improves anemia. ESAs, the current standard first-line therapeutic option for anemic lower-risk patients with MDS, also improve red cell parameters mainly by expanding proliferation of early erythroid progenitor cells. However, erythropoietin (EPO) and its receptor (EPO-R) are also required for survival of late-stage definitive erythroid cells, and they play an essential role in promoting proliferation, survival, and appropriate timing of terminal maturation of primitive erythroid precursors. Thus, luspatercept joins the mechanism of ESAs in promoting erythroid maturation. Especially in the subgroup of MDS patients with RS, luspatercept showed high clinical activity for the treatment of anemia in the phase 2 (PACE-MDS) trial and subsequently in the phase 3 (MEDALIST) trial, which resulted in approval by both the US Food and Drug Administration and the European Medicines Agency in April 2020. Additional studies are needed to better understand the mechanism of action and pharmacodynamics of this novel agent in MDS.
Project description:Regulation of the cell cycle is intimately linked to erythroid differentiation, yet how these processes are coupled is not well understood. To gain insight into this coordinate regulation, we examined the role that the retinoblastoma protein (Rb), a central regulator of the cell cycle, plays in erythropoiesis. We found that Rb serves a cell-intrinsic role and its absence causes ineffective erythropoiesis, with a differentiation block at the transition from early to late erythroblasts. Unexpectedly, in addition to a failure to properly exit the cell cycle, mitochondrial biogenesis fails to be upregulated concomitantly, contributing to this differentiation block. The link between erythropoiesis and mitochondrial function was validated by inhibition of mitochondrial biogenesis. Erythropoiesis in the absence of Rb resembles the human myelodysplastic syndromes, where defects in cell cycle regulation and mitochondrial function frequently occur. Our work demonstrates how these seemingly disparate pathways play a role in coordinately regulating cellular differentiation. Keywords: disease state analysis
Project description:Immunodeficient mouse models have been valuable for studies of human hematopoiesis, but high-fidelity recapitulation of erythropoiesis in most xenograft recipients remains elusive. Recently developed immunodeficient and Kit mutant mice, however, have provided a suitable background to achieve higher-level human erythropoiesis after long-term hematopoietic engraftment. While there has been some characterization of human erythropoiesis in these models, a comprehensive analysis of various developmental stages has not yet been reported. Here, we have utilized cell surface phenotypes, morphologic analyses, and molecular studies to fully characterize human erythropoiesis from multiple developmental stages in immunodeficient and Kit mutant mouse models following long-term hematopoietic stem and progenitor cell engraftment. We show that human erythropoiesis in such models demonstrates complete maturation and enucleation, as well as developmentally appropriate globin gene expression. These results provide a framework for future studies to utilize this model system for interrogating disorders affecting human erythropoiesis and for developing improved therapeutic approaches.
Project description:Regulation of the cell cycle is intimately linked to erythroid differentiation, yet how these processes are coupled is not well understood. To gain insight into this coordinate regulation, we examined the role that the retinoblastoma protein (Rb), a central regulator of the cell cycle, plays in erythropoiesis. We found that Rb serves a cell-intrinsic role and its absence causes ineffective erythropoiesis, with a differentiation block at the transition from early to late erythroblasts. Unexpectedly, in addition to a failure to properly exit the cell cycle, mitochondrial biogenesis fails to be upregulated concomitantly, contributing to this differentiation block. The link between erythropoiesis and mitochondrial function was validated by inhibition of mitochondrial biogenesis. Erythropoiesis in the absence of Rb resembles the human myelodysplastic syndromes, where defects in cell cycle regulation and mitochondrial function frequently occur. Our work demonstrates how these seemingly disparate pathways play a role in coordinately regulating cellular differentiation. Experiment Overall Design: Microarray expression analysis from sorted CD71+/Ter-119+ bone marrow erythroid progenitors of Rb-null animals and controls. The Rb-null genotype was EpoR-GFPcre/+; Rb fl/fl and the control genotype was EpoR-GFPcre/+; Rb fl/+. We have analyzed 3 Rb-null datasets and 3 control datasets.