Project description:Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of cellular pathways. The goals of this study are to compare NGS-derived transcriptome profiling (RNA-seq) and transposon insertion mutagenesis (Tnseq) libraries of Lon deletions compared to wt Caulobacter crescentus. Methods: See Methods section of The Lon protease links nucleotide metabolism with proteotoxic stress for information regarding methods or contact lead correspondence. Briefly, Samples for RNAseq were extracted from wt and lon deletion strains grown to mid exponential phase. Methods: See Methods section of The Lon protease links nucleotide metabolism with proteotoxic stress for information regarding methods or contact lead correspondence. Briefly, Samples for Tnseq were generated by Eztn5 transposon mutagenesis. Conclusions: Our study represents the first detailed analysis of lon deletion comparison to wt caulobacter transcriptomes, with biologic replicates, generated by RNA-seq technology.
Project description:To characterize the defense mechanisms P. aeruginosa has evolved in response to its most toxic phenazine, pyocyanin, we performed a genome-wide transposon sequencing (TnSeq) screen in which the mutant library was exposed to PYO under carbon starvation in order to maximize PYO toxicity, and genes for which transposon mutants were significantly enriched or depleted were identified.
Project description:Investigation of whole genome gene expression level changes in a Caulobacter crescentus NA1000 dcdnL mutant, compared to the wild-type strain. In bacteria, transcription of housekeeping genes required for metabolic homeostasis and cell proliferation is guided by the sigma factor σ70. The conserved CarD-like transcriptional regulator, CdnL, associates with promoter regions where σ70 localizes and stabilizes the open promoter complex. Caulobacter crescentus cells lacking CdnL have severe morphological and growth defects. Our microarray experiment demonstrates how cdnL deletion affects the transcriptome of Caulobacter crescentus.
Project description:As transposon sequencing (TnSeq) assays have become prolific in the microbiology field, it is of interest to scrutinize their potential drawbacks. TnSeq results are determined by counting transposon insertions following the PCR-based enrichment and subsequent deep sequencing of transposon insertions. Here we explore the possibility that PCR amplification of transposon insertions in a TnSeq library skews the results by introducing bias into the detection and/or enumeration of insertions. We compared the detection and frequency of mapped insertions when altering the number of PCR cycles in the enrichment step. In addition, we devised and validated a novel, PCR-free TnSeq method where the insertions are enriched via CRISPR/Cas9-targeted transposon cleavage and subsequent Oxford Nanopore sequencing. These PCR-based and PCR-free experiments demonstrate that, overall, PCR amplification does not significantly bias the results of the TnSeq assay insofar as insertions in the majority of genes represented in our library were similarly detected regardless of PCR cycle number and whether or not PCR amplification was employed. However, the detection of a small subset of genes which had been previously described as essential is indeed sensitive to the number of PCR cycles. We conclude that PCR-based enrichment of transposon insertions in a TnSeq assay is reliable but researchers interested in profiling essential genes should carefully weigh the number of amplification cycles employed in their library preparation protocols. In addition, we present a PCR-free TnSeq alternative that is comparable to traditional PCR-based methods although the latter remain superior owing to their accessibility and high sequencing depth.
Project description:Investigation of whole genome gene expression level changes in a Caulobacter crescentus NA1000 delta-CCNA_00382 (ccrM) mutant, compared to the wild-type strain. The mutations engineered into this strain render it incapable of methylating its genome on the adenine at GANTC motifs. References for strains : WT: Marks, M.E., Castro-Rojas, C.M., Teiling, C., Du, L., Kapatral, V., Walunas, T.L. and Crosson, S. (2010) The genetic basis of laboratory adaptation in Caulobacter crescentus. J Bacteriol, 192, 3678-3688; Collier, J. and Shapiro, L. (2009) Feedback control of DnaA-mediated replication initiation by replisome-associated HdaA protein in Caulobacter. J Bacteriol, 191, 5706-5716. DccrM: Gonzalez, D. and Collier, J. (2013) DNA methylation by CcrM activates the transcription of two genes required for the division of Caulobacter crescentus. Mol Microbiol, 88, 203-218. A six chip study using total RNA recovered from three separate wild-type cultures of Caulobacter crescentus NA1000 and three separate cultures of a triple mutant strain, Caulobacter crescentus NA1000 delta-CCNA_00382 (ccrM), in which the ccrM gene coding for a DNA methyltransferase methylating the adenine in GANTC motifs is truncated and its product inactive. Each chip measures the expression level of 3933 genes from Caulobacter crescentus NA1000 with 3 probes per gene and with three-fold technical redundancy.
Project description:The goal of this project was to identify bacterial transporters responsible for uptake of environmentally relevant marine metabolites. We used the model marine heterotrophic bacterium Ruegeria pomeroyi DSS-3, for which an arrayed library of single gene knockout mutants has been generated by selecting isolated from a barcoded transposon mutant library (BasSeq). Knockout mutants of putative transporters were grown on minimal medium with a single substrate as sole carbon source. Mutant defect was assessed by comparing the substrate drawdown of isolated mutants to drawdown by a pooled mutant library (BarSeq), a proxy for wildtype fitness.
Project description:Investigation of whole genome gene expression level changes in a Caulonacter crescentus NA1000 Plac::CCNA_00382 (ccrM) mutant, compared to the wild-type strain. The mutations engineered into this strain cause the CcrM DNA methyltransferase to be overexpressed and the chromosome to be constitutively methylated at the adenine at GANTC motifs. References of strains: CcrMOE: Collier, J. and Shapiro, L. (2009) Feedback control of DnaA-mediated replication initiation by replisome-associated HdaA protein in Caulobacter. J Bacteriol, 191, 5706-5716. WT: Marks, M.E., Castro-Rojas, C.M., Teiling, C., Du, L., Kapatral, V., Walunas, T.L. and Crosson, S. (2010) The genetic basis of laboratory adaptation in Caulobacter crescentus. J Bacteriol, 192, 3678-3688; Collier, J. and Shapiro, L. (2009) Feedback control of DnaA-mediated replication initiation by replisome-associated HdaA protein in Caulobacter. J Bacteriol, 191, 5706-5716. A six chip study using total RNA recovered from three separate wild-type cultures of Caulonacter crescentus NA1000 and three separate cultures of a triple mutant strain, Caulonacter crescentus NA1000 Plac::CCNA_00382 (ccrM), in which the ccrM gene coding for a DNA methyltransferase methylating the adenine in GANTC motifs is truncated and its product inactive. Each chip measures the expression level of 3933 genes from Caulobacter crescentus NA1000 with 3 probes per gene and with three-fold technical redundancy.
Project description:This SuperSeries is composed of the following subset Series: GSE25996: Expression data from Caulobacter crescentus starved for carbon GSE25997: Expression data from Caulobacter crescentus (syn. C. vibrioides) swarmer and stalked cells starved for carbon GSE25998: Expression data from WT, DSigT and DSigU Caulobacter crescentus (syn. C. vibrioides) starved for carbon Refer to individual Series
Project description:Investigation of whole genome gene expression level changes in a Caulobacter crescentus NA1000 delta-CCNA_00382 (ccrM) mutant, compared to the wild-type strain. The mutations engineered into this strain render it incapable of methylating its genome on the adenine at GANTC motifs. References for strains : WT: Marks, M.E., Castro-Rojas, C.M., Teiling, C., Du, L., Kapatral, V., Walunas, T.L. and Crosson, S. (2010) The genetic basis of laboratory adaptation in Caulobacter crescentus. J Bacteriol, 192, 3678-3688; Collier, J. and Shapiro, L. (2009) Feedback control of DnaA-mediated replication initiation by replisome-associated HdaA protein in Caulobacter. J Bacteriol, 191, 5706-5716. DccrM: Gonzalez, D. and Collier, J. (2013) DNA methylation by CcrM activates the transcription of two genes required for the division of Caulobacter crescentus. Mol Microbiol, 88, 203-218.