Project description:The project aims at unraveling the venom repertoire of the lesser banded hornet (Vespa affinis) and investigate the regimes of natural selection underpinning their venom evolution. The study also sheds light on the clinical repercussions of the V. affinis venom.
Project description:Background The generalist dipteran pupal parasitoid Nasonia vitripennis injects 79 venom peptides into the host before egg laying. This venom induces several important changes in the host, including developmental arrest, immunosuppression, and alterations to normal metabolism. It is hoped that diverse and potent bioactivities of N. vitripennis venom provide an opportunity for the design of novel acting drugs. However, currently very little is known about the individual functions of N. vitripennis venom peptides and less than half can be bioinformatically annotated. The paucity of annotation information complicates the design of studies that seek to better understand the potential mechanisms underlying the envenomation response. Although the RNA interference system of N. vitripennis provides an opportunity to functionally characterise venom encoding genes, with 79 candidates this represents a daunting task. For this reason we were interested in determining the expression levels of venom encoding genes in the venom gland, such that this information could be used to rank candidate venoms. To do this we carried out deep sequencing of the transcriptome of the venom gland and neighbouring ovary tissue and used RNA-seq to measure expression from the 79 venom encoding genes. The generation of a specific venom gland transcriptome dataset also provides further opportunities to investigate novel features of this highly specialised organ. Results High throughput sequencing and RNA-seq revealed that the highest expressed venom encoding gene in the venom gland was a serine protease called Nasvi2EG007167, which has previously been implicated in the apoptotic activity of N. vitripennis venom. As expected the RNA-seq confirmed that the N. vitripennis venom encoding genes are almost exclusively expressed in the venom gland relative to the neighbouring ovary tissue. Novel peptides appear to perform key roles in N. vitripennis venom function as only four of the highest 15 expressed venom encoding genes are bioinformatically annotationed. The high throughput sequencing data also provided evidence for the existence of an additional 471 novel genes in the Nasonia genome that are expressed in the venom gland and ovary. Finally, metagenomic analysis of venom gland transcripts identified viral transcripts that may play an important part in the N. vitripennis venom function. Conclusions The expression level information provided here for the 79 venom encoding genes provides an unbiased dataset that can be used by the N. vitripennis community to identify high value candidates for further functional characterisation. These candidates represent bioactive peptides that have value in drug development pipelines.
Project description:Both single cell and bulk RNA sequencing was performed on expanding or differentiating snake venom gland organoids (from Aspidelaps Lubricus Cowlesi and Naja Nivea), or tissue (Aspidelaps Lubricus Cowlesi). Bulk RNA sequencing from the snake venom gland, liver and pancreas was performed to construct a de novo transcriptome using Trinity.
Project description:Agelena koreana is indigenous spider in South Korea that lives on piles of trees building webs. RNA-sequencing was performed for venom gland tissue and whole body except venom gland.
Project description:Callobius koreanus (C.koreanus) is a wandering spider and a member of the Amaurobiidae family, infraorder Araneae. RNA-sequencing was performend for venom gland tissue and whole body except venom gland.
Project description:Heloderma horridum horridum commonly known as the scorpion lizard, Mexican scorpion, and beaded lizard, is a venomous reptile native of America. The venom derived from this lizard has potential applications, particularly in treatment of type II diabetes through the peptide Exendin. In this work, H. h. horridum venom was extracted from adult specimens and lyophilized. To characterize the venom, enzymatic assays, including hyaluronidase, phospholipase A2, and proteolytic activity were conducted. A proteomic analysis of the venom was also performed employing bottom-up/shotgun approaches from SDS-PAGE and High pH Reversed-Phase chromatography., besides fractionation of tryptic peptides using a nano-LC-MS/MS. These approaches involved massive sequencing to enhancing the likelihood of detecting an extensive range of venom proteins. The proteins and peptides found in H. h. horridum venom are reviewed according to the classification of the transcriptome previously reported.
Project description:We generated ATAC-seq data for pre- and post-extraction venom gland samples and H3K4me3, H3K27ac, and CTCF ChIP-seq from post-extraction venom gland samples from the Prairie Rattlesnake to investigate patterns of chromatin accessibility, transcription factor binding, and insulation during venom production, and to identify open promoters and active enhancer regions.
Project description:Health risks caused by stings from Vespa velutina nigrithorax (VV), also known as the yellow-legged Asian hornet, have become a public concern, but little is known about its venom composition. This study presents the proteome profile of the VV’s venom sac based on Sequential Window Acquisition of all Theoretical Mass Spectra (SWATH-MS). The study also performed proteomic quantitative analysis and examined the biological pathways and molecular functions of the proteins in the VS of VV gynes (i.e., future queens [SQ]) and workers [SW]). The total protein content per VS was significantly higher in the SW than in the SQ (274 ± 54 µg/sac vs. 175 ± 22 µg/sac; p=0.02). We quantified a total of 228 proteins belonging to 7 different classes: Insecta (n=191); Amphibia and Reptilia (n=20); Bacilli, γ-Proteobacteria and Pisoniviricetes (n=12); and Arachnida (n=5). Phage proteins of Paenibacillus larvae, the etiological agent of American foulbrood, and genome polyprotein from deformed wing virus were quantified by SWATH-MS. Among the 228 identified proteins, 66 showed significant differential expression between SQ and SW. The well-known allergens hyaluronidase A, venom antigen 5 and phospholipase A1 were significantly downregulated in the SQ venom.
Project description:Diachasmimorpha longicaudata parasitoid wasps carry a symbiotic poxvirus, known as DlEPV, within the female wasp venom gland. We sequenced RNA from venom gland tissue to identify DlEPV orthologs for 3 conserved poxvirus core genes. The DlEPV ORFs identified from this transcriptome were used to design primers for downstream RT-qPCR analysis and RNAi knockdown experiments.