Project description:Two small RNA libraries and 2 degradome libraries were constructed from potato tubers stored at room temperature or exposed to cold stress for deep sequencing. Through small RNA sequencing, 53 known miRNAs and 59 novel miRNAs were identified. Seventy genes were identified as miRNA targets by degradome sequencing. Small RNA sequencing and degradome sequencing of control and cold treated Solanum tuberosum tubers
Project description:Two small RNA libraries and 2 degradome libraries were constructed from potato tubers stored at room temperature or exposed to cold stress for deep sequencing. Through small RNA sequencing, 53 known miRNAs and 59 novel miRNAs were identified. Seventy genes were identified as miRNA targets by degradome sequencing.
Project description:We aimed to identify targets of miRNAs during wheat grain development by using degradome sequencing approach. Two degradome libraries were constructed from wheat grains. Verification of miRNA targets from two degradome libraries in developing wheat grains.
Project description:To identity the targets of miRNAs, we bundled 12 samples from different developing satages into four mixture samples. These samples were used to cosntruct degradome libraries and preform degradome sequencing on Illumina Hi-seq 2000 analyzer. More than 44.98 millions clean reads were obtained and 33.52 million reads were mapped to the soybean cDNA. The mapped reads were used to identity miRNA targets by CleaveLand4 pipeline. 4 degradome mixed samples, no replicates, but every degradome data consists of two parts data. Please note that every degradome sample has two processed and two raw data files. To have enough data, additional sequencing was performed from each sample library. And each sample raw data was processed separately (tissue_name*degradome.txt) and also combined (all_degradome*.txt).
Project description:We aimed to identify targets of miRNAs during wheat grain development by using degradome sequencing approach. Two degradome libraries were constructed from wheat grains.
Project description:We performed one degradome sequencing for identification and characterization of novel microRNAs in Phalaenopsis aphrodite subsp. formosana. Plant tissues of leaves, stalk, and flower buds frozen in liquid nitrogen were ground to fine powder using a mortar and pestle, respectively. Total RNA extraction was freshly prepared using Trizol (Invitrogen, Carlsbad, CA, USA) following the manufacturer's instructions. About 50 μg of leaves with or without low temperature treatment, stalks and flower buds were taken separately and then mixed. The degradome library was constructed by the Genomics BioSci & Tech. Company following the manufactoring protocol. In brief, 200 μg of total RNA was passed though polyA column using the Oligotex kit (Qiagen). The 5'-RNA adapter containing a Mme I recognition site was ligated by T4 RNA ligase and further reverse transcribed to amplify the templates. After digesting with Mme I then ligated to a 3'-double DNA adapter, the products were amplified by additional PCR cycles and gel-purified for Illumina sequencing. The files contain the raw data of degradome sequencing. Examination of one degradome of mixed tissues of Phalaenopsis orchid
Project description:In this study, in order to identify miRNA targets, a degradome library derived from anthers of the WT and GMS (Genetic Male Sterility) mutant representing three stages of development was constructed and sequenced, resulting in the generation of 24.6 million raw reads. After removal of low quality sequences and adapter sequences, 24.4 million clean reads were obtained and 98% were 20 or 21 nt in length as expected in that normally length distribution peak of degradome fragment is between 20 and 21 nt [Addo-Quaye C, Eshoo TW, Bartel DP, Axtell MJ: Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol 2008, 18:758-762].
Project description:Post-transcriptional gene regulation is a critical layer of overall gene expression programs and microRNAs (miRNAs) play an indispensable role in this process by guiding cleavage on the messenger RNA targets. The miRNA-guided cleavage on the mRNA targets can be confirmed by analyzing the sequenced degradome or PARE or GMUCT libraries. However, high-throughput sequencing of PARE or degradome libraries is not as straightforward as sequencing small RNA libraries. Moreover, the currently used degradome or PARE methods utilize Mme1 restriction site and the resulting fragments are only 20-nt long, which often poses difficulty in distinguishing between the family members of the same gene family. In this modified degradome protocol, EcoP15I recognition site is introduced to the 3' end of the 5’RNA adaptor of TruSeq small RNA library, the double strand DNA adaptor sequence is modified to suit with the ends generated by the EcoP15I. These modifications allow amplification of the degradome library by primer pairs used for small RNA library preparation. Therefore, degradome library generated using this protocol can be sequenced as easily as small RNA library, and the resulting tag length is ~27-nt, which is longer than previous methods (20-nt). The protocol allows sequencing small RNA and degradome libraries simultaneously.
Project description:We used dithiothreitol (DTT) and tauroursodeoxycholic acid (TUDCA) to induce or suppress ER stress in wheat cells, respectively, with the aim to reveal the molecular background of ER stress responses using degradome sequencing. After combined analysis of high-throughput sequencing, a total of 12,453 miRNA-target pairs were verified by degradome sequencing, and among them, 7,484 genes were targeted by 1,233 miRNAs.