Project description:About 25% of familial breast cancer (BC) is attributed to germline mutations of BRCA1 and BRCA2 genes while the rest of patients are included in the BRCAX group. BC also affects men with a worldwide incidence of 1%. The epigenetic alterations, including those DNA methylation, have been rarely studied in the male breast cancer (MBC) on a genome-wide level. The aim of the current work was to study the global DNA methylation profiles of BC patients to look for differences between familial female breast cancer (FBC) and MBC and according to BRCA1, BRCA2 and BRCAX mutation status. The genomic DNA from FFPE tissues of 17 female and 7 male patients with BC was subjected to methylated DNA immunoprecipitation (MeDIP) and hybridized on human promoter microarrays. The comparison between FBC and MBC showed 2846 differentially methylated regions (DMRs) corresponding to 2486 distinct annotated genes. The gene ontology enrichment analysis revealdrelevant molecular function terms such as the GTPase superfamily genes (in particular the GTPase Rho GAP/GEF and GTPase RAB) and cellular component terms associated to cytoskeletal architecture such as “cytoskeletal part”, “keratin filament”, “intermediate filament". By considering only FBC, several cancer-associated pathways were the most enriched KEGG pathways of differentially methylated genes between BRCA2 and BRCAX or BRCA1+BRCAX groups. The comparison between BRCA1 group vs BRCA2+BRCAX group displayed the enriched molecular function term “cytoskeletal protein binding”. Finally, the functional annotation of differentially methylated genes between BRCAX and BRCA1+BRCA2 groups indicated that the most enriched molecular function terms were related to GTPase activity. In summary, this is the first study that compares the global DNA methylation profile of familial FBC and MBC and the results may provide useful insights into the epigenomic subtyping of breast cancer and shed light on a possible new molecular mechanisms underlying BC carcinogenesis.
Project description:In total, ~25% of familial breast cancer (BC) is attributed to germline mutations of the BRCA1 and BRCA2 genes, while the rest of the cases are included in the BRCAX group. BC is also known to affect men, with a worldwide incidence of 1%. Epigenetic alterations, including DNA methylation, have been rarely studied in male breast cancer (MBC) on a genome-wide level. The aim of the present study was to examine the global DNA methylation profiles of patients with BC to identify differences between familial female breast cancer (FBC) and MBC, and according to BRCA1, BRCA2 or BRCAX mutation status. The genomic DNA of formalin-fixed paraffin-embedded tissues from 17 women and 7 men with BC was subjected to methylated DNA immunoprecipitation and hybridized on human promoter microarrays. The comparison between FBC and MBC revealed 2,846 significant differentially methylated regions corresponding to 2,486 annotated genes. Gene Ontology enrichment analysis revealed molecular function terms, such as the GTPase superfamily genes (particularly the GTPase Rho GAP/GEF and GTPase RAB), and cellular component terms associated with cytoskeletal architecture, such as 'cytoskeletal part', 'keratin filament' and 'intermediate filament'. When only FBC was considered, several cancer-associated pathways were among the most enriched KEGG pathways of differentially methylated genes when the BRCA2 group was compared with the BRCAX or BRCA1+BRCAX groups. The comparison between the BRCA1 and BRCA2+BRCAX groups comprised the molecular function term 'cytoskeletal protein binding'. Finally, the functional annotation of differentially methylated genes between the BRCAX and BRCA1+BRCA2 groups indicated that the most enriched molecular function terms were associated with GTPase activity. In conclusion, to the best of our knowledge, the present study was the first to compare the global DNA methylation profile of familial FBC and MBC. The results may provide useful insights into the epigenomic subtyping of BC and shed light on a possible novel molecular mechanism underlying BC carcinogenesis.
Project description:We conducted micro-array analysis to quantify the global transcriptome variations in floral organs of a male and female tree allowing for identification of sex-linked transcripts. We used RNA samples from male floral buds in August and female floral buds in Spetemeber. Bud scale were removed. While the sampling time differed, the developmental stage of the floral organs was similar between the male and female.
Project description:We conducted micro-array analysis to quantify the global transcriptome variations in floral organs of a male and female tree allowing for identification of sex-linked transcripts. We used RNA samples from male floral buds in August and female floral buds in September. Bud scale were removed. While the sampling time differed, the developmental stage of the floral organs was similar between the male and female. Five independent samples of floral bud tissues with bud scales removes were collected from the upper crown of a sexually mature male tree and female tree. RNA was extracted from tissues and hybridized on Affymetrix Genechip Poplar Genome Array.
Project description:Nitrogen is a key factor impacting plant physiological processes and protein abundance. Although many proteins were changed substantially in poplar under N deficiency, the post-translational modifications in male and female poplars are still unclear. Therefore, we selected male and female poplars and analysed the changes of protein phosphorylation in response to N-deficient conditions.
Project description:The purpose of this study is to determine the frequency of colorectal cancer in male and female endurance athletes between the ages of 35 and 50.