Project description:Recent high-throughput approaches have revealed a vast number of transcripts with unknown functions. Many of these transcripts are long noncoding RNAs (lncRNAs), and intergenic region-derived lncRNAs are classified as long intergenic noncoding RNAs (lincRNAs). Although Myosin heavy chain 6 (Myh6) encoding primary contractile protein is down-regulated in stressed hearts, the underlying mechanisms are not fully clarified especially in terms of lincRNAs. Here, we screen upregulated lincRNAs in pressure overloaded hearts and identify a muscle-abundant lincRNA termed Lionheart. Compared with controls, deletion of the Lionheart in mice leads to decreased systolic function and a reduction in MYH6 protein levels following pressure overload. We reveal decreased MYH6 results from an interaction between Lionheart and Purine-rich element-binding protein A after pressure overload. Furthermore, human LIONHEART levels in left ventricular biopsy specimens positively correlate with cardiac systolic function. Our results demonstrate Lionheart plays a pivotal role in cardiac remodeling via regulation of MYH6.
Project description:To look at the affect of talins in cardiac fibroblasts (CF), we subjected Tln2-null and Tln2-null; Tln1-specific CF knockout mice to AngII stimulation for 8 weeks to induce pressure overload injury. We found that Tln2-null; Tln1-specific CF knockout mice had increaed cardiomyocyte hypertrophy and systolic blood pressure, with not change in intersitial fibrosis.
Project description:Myocardial deletion of klf4 sensitizes mouse to pressure overload. In order to gain a better understanding of molecular mechanisms of such alterations, we profiled gene expression before and after 3-day of pressure overload (induced by transverse aortic constriction -TAC) in the hearts from MHC-cre (Cre) control and MHC-cre-klf4-deficient (KO) mice. 10wk old male mice was subjected to transverse aortic constriction (TAC) to induce pressure overload or sham operation as control group. After 3 days, heart was removed and total RNA was extracted from apex and subjected for array analysis. Four animals in each group.
Project description:Aortic banding is an excellent model system to evaluate the process of development of left ventricular hypertrophy in response to hemodynamic stress. The Affymetrix GeneChip MgU74Av1 was used to analyze expression profiles of mice at different time points after surgical intervention for pressure-overload induced hypertrophy. More information about this model may be obtained at http://cardiogenomics.med.harvard.edu/groups/proj1/pages/band_home.html Keywords = Pressure overload, cardiac hypertrophy Keywords: time-course
Project description:Expression profiling of hearts from FVB males subjected to cardiac pressure overload by transverse aortic constriction (TAC). TAC performed on 8-10 weeks month old males and females. Hearts examined 30 weeks after surgery. Keywords: ordered
Project description:Myocardial deletion of klf4 sensitizes mouse to pressure overload. In order to gain a better understanding of molecular mechanisms of such alterations, we profiled gene expression before and after 3-day of pressure overload (induced by transverse aortic constriction -TAC) in the hearts from MHC-cre (Cre) control and MHC-cre-klf4-deficient (KO) mice.