Project description:A new haloalkaliphilic species of Wenzhouxiangella, strain AB-CW3 was isolated from a system of alkaline soda lakes in the Kulunda Steppe. Its complete, circular genome was assembled from combined nanopore and illumina sequencing and its proteome was determined for three different experimental conditions: growth on Staphylococcus cells, casein, or peptone. AB-CW3 is an aerobic bacterium feeding mainly on proteins and peptides.
Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:More than 2x10E9 sequences made on Illumina platform derived from the genome of E14 embryonic stem cells cultured in our laboratory were used to build a database of about 2.7x10E6 single nucleotide variant. The database was validated using other two sequencing datasets from other laboratory and high overlap was observed. The identified variant are enriched on intergenic regions, but several thousands reside on gene exons and regulatory regions, such as promoters, enhancers, splicing site and untranslated regions of RNA, thus indicating high probability of an important functional impact on the molecular biology of this cells. We created a new E14 genome assembly including the new identified variants and used it to map reads from next generation sequencing data generated in our laboratory or in others on E14 cell line. We observed an increase in the number of mapped reads of about 5%. CpG dinucleotide showed the higher variation frequency, probably because of it could be target of DNA methylation. We performed a reduced representation bisulfite sequencing on E14 cell line to test our new genome assembly with respect to the mm9 genome reference. After mapping and methylation status calling, we obtained an increase of about 120,000 called CpG and we avoided about 20,000 wrong CpG calling. genotyping of E14 embryonic stem cells (ESCs) and Reduced representation Bisulfite Sequencing (RRBS) of E14 ESCs.
Project description:Purpose : The goal of this study was to use RNA Seq to explore the correlation of gene expression of a collection of clinical P. aeruginosa isolates to various phenotypes, such as antimicrobial resistance, biofilm formation or virulence Methods : mRNA profiles were generated for Pseudomonas aerugionsa clinical samples derived from various geographical locations by deep sequencing. The removal of ribosomal RNA was performed using the Ribo-Zero Bacteria Kit (Illumina) and cDNA libraries were generated with the ScriptSeq v2 Kit (Illumina) . The samples were sequenced in single end mode on an Illumina HiSeq 2500 device and mRNA reads were trimmed and mapped to the NC_008463.1 (PA14) reference genome from NCBI using Stampy pipeline with defaut settings.
Project description:Advances in sequencing and assembly technology has led to the creation of genome assemblies for a wide variety of non-model organisms. The rapid production and proliferation of updated, novel assembly versions can create create vexing problems for researchers when multiple genome as-sembly versions are available at once, requiring researchers to work with more than one reference genome. Multiple genome assemblies are especially problematic for researchers studying the genetic makeup of individual cells as single cell RNA sequencing (scRNAseq) requires sequenced reads to be mapped and aligned to a single reference genome. Using the Astyanax mexicanus this study highlights how the interpretation of a single cell dataset from the same sample changes when aligned to its two different available genome assemblies. We found that the number of cells and expressed genes detected were drastically different when aligning to the different assemblies. When the genome assemblies were used in isolation with their respective annotation, cell type identification was confounded as some classic cell type markers were assembly-specific, whilst other genes showed differential patterns of expression between the two assemblies. To overcome the problems posed by multiple genome assemblies, we propose that researchers align to each available assembly and then integrate the resultant datasets to produce a final dataset in which all genome alignments can be used simultaneously. We found this approach increased the accuracy of cell type identification and maximised the amount of data that could be extracted from our single cell sample by capturing all possible cells and transcripts. As scRNAseq becomes more widely available, it is imperative that the single cell community is aware how genome assembly alignment can alter single cell data and its interpretation, especially when reviewing studies on non-model organisms.
Project description:Multinucleated giant hemocytes (MGHs) represent a novel type of blood cell in insects that participate in a highly efficient immune response against parasitoid wasps involving isolation and killing of the parasite. Previously we showed that circulating MGHs have high motility and interaction with the parasitoid rapidly triggers encapsulation, structural and molecular mechanisms behind these processes remained elusive. Here, we use detailed ultrastructural analysis of MGHs and also live cell imaging to study encapsulation in Drosophila ananassae after parasitoid wasp infection. We found dynamic structural changes, mainly driven by the formation of diverse vesicular systems and a large variety of newly developed intracytoplasmic membrane organizations, moreover abundant generation of giant cell exosomes (GCE) in the MGHs. Moreover, we used RNA sequencing to study the transcriptomic profile of MGHs and the activated plasmatocytes 72 hours after infection, as well as the uninduced blood cells. This reveals that differentiation of MGHs is accompanied by broad changes in gene expression. Consistent with the observed structural changes, transcripts mainly related to vesicular function, cytoskeletal organization and adhesion were enriched in MGHs. In addition, transmembrane receptors were upregulated, which may be important for parasitoid recognition. Our results reveal coordinated molecular and structural changes in the course of MGH differentiation and parasitoid encapsulation, providing a mechanistic model for a powerful innate immune response.
Project description:Centromeres are chromosomal regions that serve as platforms for kinetochore assembly and spindle attachments, ensuring accurate chromosome segregation during cell division. Despite functional conservation, centromeric sequences are diverse and usually repetitive across species, making them challenging to assemble and identify. Here, we describe centromeres in the model oomycete Phytophthora sojae by combining long-read sequencing-based genome assembly and chromatin immunoprecipitation for the centromeric histone CENP-A followed by high-throughput sequencing (ChIP-seq). P. sojae centromeres cluster at a single focus in the nucleus at different life stages and during nuclear division. We report a highly contiguous genome assembly of the P. sojae reference strain, which enabled identification of 15 highly enriched CENP-A binding regions as putative centromeres. By focusing on 10 intact regions, we demonstrate that centromeres in P. sojae are regional, spanning 211 to 356 kb. Most of these regions are transposon-rich, poorly transcribed, and lack the euchromatin mark H3K4me2 but are embedded within regions with the heterochromatin marks H3K9me3 and H3K27me3.
Project description:We identified genes regulated by parasitization of the silkworm Bombyx mori by three tachinid parasitoid species, Exorista japonica, Drino inconspicuoides and Pales pavida, using oligonucleotide microarrays. The numbers of genes and their intensity of expression varied with the species of parasitoid, within silkworm hemocytes and fat body.
Project description:The naked mole-rat (NMR; Heterocephalus glaber) has recently gained considerable attention in the scientific community for its unique potential to unveil novel insights in the fields of medicine, biochemistry, and evolution. NMRs exhibit unique adaptations that include protracted fertility, cancer resistance, eusociality, and anoxia. This suite of adaptations is not found in other rodent species, suggesting that interrogating conserved and accelerated regions in the NMR genome will find regions of the NMR genome fundamental to their unique adaptations. However, the current NMR genome assembly has limits that make studying structural variations, heterozygosity, and non-coding adaptations challenging. We present a complete diploid naked-mole rat genome assembly by integrating long-read and 10X-linked read genome sequencing of a male NMR and its parents, and Hi-C sequencing in the NMR hypothalamus (N=2). Reads were identified as maternal, paternal or ambiguous (TrioCanu). We then polished genomes with Flye, Racon and Medaka. Assemblies were then scaffolded using the following tools in order: Scaff10X, Salsa2, 3d-DNA, Minimap2-alignment between assemblies, and the Juicebox Assembly Tools. We then subjected the assemblies to another round of polishing, including short-read polishing with Freebayes. We assembled the NMR mitochondrial genome with mitoVGP. Y chromosome contigs were identified by aligning male and female 10X linked reads to the paternal genome and finding male-biased contigs not present in the maternal genome. Contigs were assembled with publicly available male NMR Fibroblast Hi-C-seq data (SRR820318). Both assemblies have their sex chromosome haplotypes merged so that both assemblies have a high-quality X and Y chromosome. Finally, assemblies were evaluated with Quast, BUSCO, and Merqury, which all reported the base-pair quality and contiguity of both assemblies as high-quality. The assembly will next be annotated by Ensembl using public RNA-seq data from multiple tissues (SRP061363). Together, this assembly will provide a high-quality resource to the NMR and comparative genomics communities.