Project description:The nitrogen rich compound guanidine occurs widely in nature and is used by microbes as a nitrogen source, but microorganisms that grow on guanidine have not yet been discovered. Here we show that complete ammonia-oxidizing microbes (comammox), but no other known nitrifiers, encode homologues of a guanidinase and that the comammox isolate Nitrospira inopinata grows on guanidine as sole source of energy and reductant. Proteomics, kinetic enzyme characterization, and the crystal structure of the N. inopinata guanidinase homologue demonstrated that it is a bona fide guanidinase. Transcription of comammox guanidinases was induced in wastewater treatment plant microbiomes upon incubation with guanidine, and guanidine degradation was detected in these systems. The discovery of guanidine as a selective growth substrate for comammox shows a unique niche of these globally important nitrifiers and offers new options for their isolation as well as for targeted manipulation of nitrifier communities.
Project description:Background: The soil environment is responsible for sustaining most terrestrial plant life on earth, yet we know surprisingly little about the important functions carried out by diverse microbial communities in soil. Soil microbes that inhabit the channels of decaying root systems, the detritusphere, are likely to be essential for plant growth and health, as these channels are the preferred locations of new root growth. Understanding the microbial metagenome of the detritusphere and how it responds to agricultural management such as crop rotations and soil tillage will be vital for improving global food production. Methods: The rhizosphere soils of wheat and chickpea growing under + and - decaying root were collected for metagenomics sequencing. A gene catalogue was established by de novo assembling metagenomic sequencing. Genes abundance was compared between bulk soil and rhizosphere soils under different treatments. Conclusions: The study describes the diversity and functional capacity of a high-quality soil microbial metagenome. The results demonstrate the contribution of the microbiome from decaying root in determining the metagenome of developing root systems, which is fundamental to plant growth, since roots preferentially inhabit previous root channels. Modifications in root microbial function through soil management, can ultimately govern plant health, productivity and food security.