Project description:Remazol brilliant blue R (RBBR) is an anthraquinone dye derived from anthracene that is decolorized by a white rot fungus, Phlebia brevispora. Interestingly, P. brevispora produces two phenomena of yellowish and pinkish colors during the degradation of RBBR. Here, we characterized the decolorization of RBBR by P. brevispora. The fungus was significantly different between the two colors via UV spectrophotometry, and the morphology of the hyphae observed in the respective color culture was also entirely different. Moreover, both of the two ligninolytic enzymes, laccase and manganese-dependent peroxidase (MnP), were remarkably stimulated in the yellowish culture at the beginning of the decolorization. It is possible that the RBBR decolorizing mechanism might be primarily related to the amount of laccase and MnP produced in the yellowish culture. Thus, the decolorized color may be rapidly estimated at initial period of incubation. In addition, GeneFishing technology revealed that two genes were differentially expressed in yellowish culture.
Project description:Wood-degrading fungi play a critical role in global carbon cycling, and their varied mechanisms for deconstruction offer pathways for industrial bioconversion. In this study, we used comparative genomics to isolate upregulation patterns among fungi with brown rot (carbohydrate-selective) or white rot (lignin-degrading) nutritional modes. Specifically, we used whole-transcriptome profiling to compare early, middle, and late decay stages on wood wafers, matching differentially-expressed gene (DEG) patterns with fungal growth and enzyme activities. This approach highlighted 34 genes uniquely upregulated in early brown rot stages, with notable candidates involved in generating reactive oxygen species (ROS) as a pretreatment mechanism during brown rot. This approach further isolated 18 genes in late brown rot stages that may be adapted to handle oxidatively-reacted lignocellulose components. By summing gene expression levels in functional classes, we also identified a broad and reliable distinction in glycoside hydrolase (GH) versus lignocellulose oxidative (LOX) transcript counts that may reflect the energy investment burden of lignin-degrading machinery among white rot fungi.
Project description:Three cytochrome P450 monooxygenase (CYP) genes, designated pb-1, pb-2 and pb-3, were isolated from the white-rot fungus, Phlebia brevispora, using reverse transcription PCR with degenerate primers constructed based on the consensus amino acid sequence of eukaryotic CYPs in the O2-binding, meander and heme-binding regions. Individual full-length CYP cDNAs were cloned and sequenced, and the relative nucleotide sequence similarity of pb-1 (1788 bp), pb-2 (1881 bp) and pb-3 (1791 bp) was more than 58%. Alignment of the deduced amino acid (aa) sequences of pb-1-pb-3 showed that these three CYPs belong to the same family with > 40% aa sequence similarity, and pb-1 and pb-3 are in the same subfamily, with > 55% aa sequence similarity. Furthermore, pb-1-pb-3 appeared to be a subfamily of CYP63A (CYP63A1-CYP63A4), found in Phanerochaete chrysosporium. The phylogenetic tree constructed by 500 bootstrap replications using the neighbor-joining method showed that the evolutionary distance between pb-1 and pb-3 was shorter than that between pb-2 and pb-1 (or pb-3). Exon-intron analysis of pb-1 and pb-3 showed that both genes have nearly the same number, size and order of exons and the types of introns, also indicating both genes appear to be evolutionarily close. It is interesting that the transcription level of pb-3 was evidently increased above the pb-1 transcription level by exposure to 12 coplanar PCB congeners and 2,3,7,8-tetrachlorodibenzo-p-dioxin, though the two genes were evolutionarily close.
Project description:White-rot basidiomycete fungi are potent degraders of plant biomass with the ability to mineralize all lignocellulose components. Recent comparative genomics studies showed that these fungi use a wide diversity of enzymes for wood degradation. In order to improve our understanding on the enzymatic mechanisms leading to lignocellulose breakdown, we analysed the early response of the white-rot fungus Pycnoporus coccineus CIRM-BRFM310 to various lignocellulosic substrates at two time points; Day 3 and Day 7.
Project description:Methionine oxydation level was monitored by tandem mass spectrometry for secreted proteins and intracellular proteins from the white-rot fungus Pycnoporus cinnabarinus grown on aspen wood.