Project description:BackgroundThe Chinese monal (Lophophorus lhuysii) is an endangered bird species, with a wild population restricted to the mountains in southwest China, and only one known captive population in the world. We investigated the fecal microbiota and metabolome of wild and captive Chinese monals to explore differences and similarities in nutritional status and digestive characteristics. An integrated approach combining 16S ribosomal RNA (16S rRNA) gene sequencing and ultra-high performance liquid chromatography (UHPLC) based metabolomics were used to examine the fecal microbiota composition and the metabolomic profile of Chinese monals.ResultsThe results showed that the alpha diversity of gut microbes in the wild group were significantly higher than that in the captive group and the core bacterial taxa in the two groups showed remarkable differences at phylum, class, order, and family levels. Metabolomic profiling also revealed differences, mainly related to galactose, starch and sucrose metabolism, fatty acid, bile acid biosynthesis and bile secretion. Furthermore, strong correlations between metabolite types and bacterial genus were detected.ConclusionsThere were remarkable differences in the gut microbiota composition and metabolomic profile between wild and captive Chinese monals. This study has established a baseline for a normal gut microbiota and metabolomic profile for wild Chinese monals, thus allowing us to evaluate if differences seen in captive organisms have an impact on their overall health and reproduction.
Project description:We found that mainstream cigarette smoking (4 cigarettes/day, 5 days/week for 2 weeks using Kentucky Research Cigarettes 3R4F) resulted in >20% decrease in the percentage of normal Paneth cell population in Atg16l1 T300A mice but showed minimal effect in wildtype littermate control mice, indicating that Atg16l1 T300A polymorphism confers sensitivity to cigarette smoking-induced Paneth cell damage. We performed cohousing experiments to test if Paneth cell phenotype is horizontally transmissible as is microbiota. Atg16l1 T300A and littermate controls that were exposed to cigarette smoking were used as microbiota donors, and these donor mice were exposed to smoking for 2 weeks prior to cohousing. Separate groups of Atg16l1 T300A and littermate controls that were not exposed to cigarette smoking were used as microbiota recipients. The microbiota recipients were co-housed with microbiota donors of the same genotype for 4 weeks, during this period the donors continued to be exposed to cigarette smoking. Cigarette smoking was performed using smoking chamber with the dosage and schedule as described above. At the end of the experiment, the fecal microbiota composition was analyzed by 16S rRNA sequencing.