Project description:Sulfur metabolism in the deep-sea cold seep has been mentioned to have an important contribution to the biogeochemical cycle of sulfur in previous studies. And sulfate reducing bacteria have also been considered to be a dominant microbial population in the deep-sea cold seep and play a crucial role in this process. However, most of sulfate reducing bacteria from cold seep still cannot be purely cultured under laboratory conditions, therefore the actual sulfur metabolism pathways in sulfate reducing bacteria from the deep-sea cold seep have remained unclear. Here, we isolate and pure culture a typical sulfate reducing bacterium Desulfovibrio marinus CS1 from the sediment sample of the deep-sea cold seep in the South China Sea, which provides a probability to understand the sulfur metabolism in the cold seep.
Project description:16s RNA gene sequencing data from seawater, bed sediment and steel corrosion samples from Shoreham Harbour, UK, collected to allow bacterial species comparisons between microbially influenced corrosion, the surrounding seawater, and the sea bed sediment at the seafloor and 50cm depth below seafloor.