Project description:We constructed E. coli transcriptome under deoxynivalenol (DON) and nivalenol (NIV) condition from Fusarium spp. To identify differentially expressed genes in mycotoxin condition, we compared mycotoxin (DON and NIV) transcriptome to acetonitrile (ACN) transcriptome as the solvent of myxotoxin. As a result, 435-929 transcripts were identified from all conditions, respectively.
Project description:Across Canada, infections associated with Fusarium have a devastating impact on the agricultural sector. For example, Fusarium head blight (FHB) costs the Canadian grain industry over $1.5 billion annually in diminished export and domestic sales. For Ontario’s most productive and lucrative crops infection by Fusarium spp., leads to losses of over $200 million annually through yield reduction in corn (i.e., stalk and ear rot), cereals (i.e., FHB), and soybeans (i.e., root rot and sudden death syndrome). Additionally, mycotoxin production by Fusarium spp. (e.g., deoxynivalenol [DON]) has severe consequences for the livestock and poultry industries through consumption of contaminated feed, as well as concerns for human health upon consumption of contaminated processed grains. Current management strategies against FHB rely on fungicide application at heading, which reduces infection but does not limit the accumulation of dangerous mycotoxins within the grains. Moreover, such fungicide applications substantially increase the economic cost to growers, raise public concerns over chemical exposure, and contribute to the development of antimicrobial resistance. The critical role of Fusarium fungal pathogens and their toxins in the health of crops, livestock, and humans underscores the need for innovative strategies to better understand mechanisms of disease and identify novel management strategies to limit the incidence of infection and to critically, reduce the accumulation of mycotoxins within infected grains
Project description:affy_brachy_2011_11 - affy_brachy_2011_11 - Fusarium graminearum is the causal agent of Fusarium head blight (FHB) of small-grain cereals, including wheat. Besides direct grain losses, this disease is of major concern because of the production by the pathogen of mycotoxins which are hazardous to animals, thus making the grain unfit for food or feed. Major mycotoxins produced by the fungus are trichothecens, including deoxynivalenol (DON). In our laboratory, we use Brachypodium distachyon as a model plant for cereals because of its amenability (short life cycle, numerous genomic and genetic resources, ...). We have recently shown that F. graminearum does induce head blight symptoms on this species and that DON is produced on infected spikes. We have also evidenced that a F. graminearum strain unable to produce DON exhibits reduced virulence on B. distachyon spikes, as previously shown on wheat. The aim of this project is to analyse and compare the plant response to DON producing and non-producing strains of F. graminearum. This analysis will allow to decipher the mechanisms of detoxification set up by the plant and also more specific responses due to the impact of the mycotoxin on plant metabolism and physiology. -Three conditions on B. distachyon spikes: 1-Mock inoculation (Tween 20 0,01%) 2-Inoculation by a F. graminearum wild-type strain 3-Inoculation by a F. graminearum mutant strain, unable to produce DON Spikes were point inoculated with 3ul of either Tween 20 0.01%, wild-type strain or mutant strain (300 spores) and incubated for 96 hours. Six inoculated spikes were collected and pooled for each condition and biological replicate. Three independent biological replicates were conducted. 9 arrays - Brachypodium; normal vs disease comparison,time course
Project description:The effect of an artificial infection with Fusarium culmorum and an application of deoxynivalenol (DON) on barley spikes of cultivars Chevron and Pedant during flowering was investigated at grain mid-dough stage 10 days after pathogen inoculation (10 dai). Proteomic analysis using a two-dimensional differential gel electrophoresis (2D-DIGE) technique coupled with LC-MS/MS was used to investigate the quantitative or qualitative differences between the experimental variants.
Project description:Investigation of whole genome gene expression level changes over time of Fusarium verticillioides wild-type in liquid fumonisin inducing media (GYAM) Fusarium verticillioides produces a polyketide derived mycotoxin, fumonsin, over time in liquid media, Proctor et al, Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis, Fungal Genetics and Biology, 38:237-249
Project description:Investigation of whole genome gene expression level changes over time of Fusarium verticillioides wild-type in liquid fumonisin inducing media (GYAM). Fusarium verticillioides produces a polyketide derived mycotoxin, fumonsin, over time in liquid media (Proctor et al, Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis, Fungal Genetics and Biology, 38:237-249).
Project description:Investigation of whole genome gene expression level changes over time of Fusarium verticillioides wild-type in liquid fumonisin inducing media (GYAM). Fusarium verticillioides produces a polyketide derived mycotoxin, fumonsin, over time in liquid media (Proctor et al, Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis, Fungal Genetics and Biology, 38:237-249). A twelve chip study using total RNA recovered from twelve wild type cultures of Fusarium verticillioides. Each chip measures the expression level of 13,288 genes with thirteen 60-mer probe pairs per gene.
Project description:Fusarium spp. are fungal pathogens of humans and plants. Fusarium oxysporum and Fusarium solani are important species isolated from infections such as onychomycosis, fungal keratitis, invasive infections, and disseminated diseases. These pathologies have a very difficult therapeutic management and poor therapeutic responses, especially in patients with disseminated infection. Little information is available regarding the molecular mechanisms responsible for antifungal resistance in these fungi. methods: In this study, we performed a quantitative analysis of the transcriptional profile of F. oxysporum and F. solani, challenged with amphotericin B (AMB) and posaconazole (PSC) using RNA-seq. Quantitative real-time reverse transcription PCR (qRT-PCR) was used to validate the results results: Several genes related to mechanisms of antifungal resistance such as efflux pumps, ergosterol pathway synthesis, and responses to oxidative stress were found. Genes such as ERG11, ERG5, the Major Facilitator Superfamily (MFS), thioredoxin, and different dehydrogenase genes may explain the reduced susceptibility of Fusarium spp. against azoles and the possible mechanisms that may play an important role in induced resistance against polyenes. conclusions: Important differences in the levels of transcriptional expression were found between F. oxysporum and F. solani exposed to the two different antifungal treatments. Knowledge on the gene expression profiles and gene regulatory networks in Fusarium spp. during exposure to antifungal compounds, may help to identify possible molecular targets for the development of novel, better, and more specific therapeutic compounds. profile transcriptional of Fusarium spp changed to antifungal treatments in vitro