Project description:Di-(2-ethylhexyl) phthalate (DEHP) is the most common endocrine disrupting chemical used as a plasticizer. DEHP is associated with the development of endometrium-related diseases through the induction of inflammation. The major therapeutic approaches against endometrial cancer and endometriosis involve the suppression of inflammatory response. Korean red ginseng (KRG) is a natural product with anti-inflammatory and anti-carcinogenic effects. Thus, the purpose of this study is to investigate the effects of KRG on DEHP-induced inflammatory response in endometrial cancer Ishikawa cells.
Project description:Di (2-ethylhexyl) phthalate (DEHP) is a common plasticizer. Studies have revealed that DEHP exposure can cause liver damage. Green tea is one of the most popular beverages in China. Green tea polyphenols (GTPs) have been proven to have therapeutic effects on organ damage induced by heavy metal exposure. However, few study report on GTP relieving DEHP-induced liver damage.
Project description:Here we present molecular mechanisms of Korean red ginseng (KRG) on immobilization stresses Keywords: stress response Mice were divided into three groups (3 mice / group): control, stress + no treat, and stress + Korean Red Ginseng (KRG, 100 mg). Stress + KRG group were given KRG 100 mg orally for 7 days and then exposed to immobilization stress for 45 min. stress + no treat group were administrated with phosphate buffer saline (d-PBS, pH 7.4) together with IMO stress for 45 min.
Project description:Bisphenol S and mono-ethylhexyl phthalate are widely used in the industry of making plastic, mailing envelopes, tickets, etc. Humans are exposed to these compounds by skin contact, inhalation, and food ingestions. However, the molecular mechanisms of these compounds' adverse effects are still unclear. We address the molecular and cellular mechanisms underlying Bisphenol S and mono-ethylhexyl phthalate effects on HeLa cells. Here microarray analysis was performed to identify distinct classes of up- or down-regulated genes and their connections to the different metabolic pathways.
Project description:Korean Red Ginseng may improve fatigue in healthy subject. It is not yet known whether Korean Red Ginseng is effective compared with a placebo in chemotherapy.
The purpose of this study is to determine whether Korean Red Ginseng is effective in the treatment of the fatigue from colorectal cancer with chemotherapy.(modified FOLFOX-6)
Project description:Phthalate plasticizers are being phased out of consumer products because of their endocrine disrupting properties. This has resulted in a need to find safe alternatives that can plasticize polyvinyl chloride (PVC) while being inexpensive and biodegradable. We aim to study the toxicogenomic profile of mono-(2-ethylhexyl) phthalate (MEHP, the active metabolite of bis(2-ethylhexyl) phthalate, DEHP), the commercial plasticizer 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH), and three plasticizers in development (1,4 butanediol dibenzoate (BDB), dioctyl succinate (DOS), and dioctyl maleate (DOM)) using the immortalized TM4 Sertoli cell line.
Project description:Mono(2-ethylhexyl) phthalate (MEHP), the main di(2-ethylhexyl) phthalate (DEHP) metabolite, is a known reproductive toxicant. Residual levels of 20 nM MEHP have been found in follicular fluid aspirated from IVF-treated women and DEHP-treated animals. It is not yet clear whether these residual MEHP levels have any effect on the follicle-enclosed oocyte or developing embryo. To clarify this point, bovine oocytes were matured with or without 20 nM MEHP for 22 h. Microarray analysis was performed for both mature oocytes and 7-day blastocysts. A feasibility examination was performed on mature oocytes (n = 200/group) to reveal a possible direct effect on the oocyte proteomic profile. Transcriptome analysis revealed MEHP-induced alterations in the expression of 456 and 290 genes in oocytes and blastocysts, respectively. The differentially expressed genes are known to be involved in various biological pathways, such as transcription process, cytoskeleton regulation and metabolic pathway. Among these, the expression of 9 genes was impaired in both oocytes exposed to MEHP (i.e., direct effect) and blastocysts developed from those oocytes (i.e., carryover effect). In addition, 191 proteins were found to be affected by MEHP in mature oocytes. The study explores, for the first time, the risk associated with exposing oocytes to physiologically relevant MEHP concentrations to the maternal transcripts. Although it was the oocytes that were exposed to MEHP, alterations carried over to the blastocyst stage, following embryonic genome activation, implying that these embryos are of low quality.