Project description:Bacteria of the genera Xylanibacter and Segatella are one of the most dominant groups in the rumen microbiota. They are characterized by the ability to utilize different hemicelluloses and pectin of plant cell-wall as well as plant energy storage polysaccharides. The degradation is possible with the use of cell envelope bound multiprotein apparatuses coded in polysaccharide utilization loci (PULs), which have been shown to be substrate specific. The knowledge of PUL presence in rumen Xylanibacter and Segatella based on bioinformatic analyses is already established and transcriptomic and genetic approaches confirmed predicted PULs for a limited number of substrates. In this study, we transcriptomically identified additional different PULs in Xylanibacter ruminicola KHP1 and Segatella bryantii TF1-3. We also identified substrate preferences and found that specific growth rate and extent of growth impacted the choice of substrates preferentially used for degradation. These preferred substrates were used by both strains simultaneously as judged by their PUL upregulation. Lastly, β-glucan and xyloglucan were used by these strains in the absence of bioinformatically and transcriptomically identifiable PUL systems.
Project description:This SuperSeries is composed of the following subset Series: GSE9640: Transcriptome Profiling of Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola on two different medias GSE9643: Transcriptome Profiling of Xanthomonas oryzae pv. oryzae knockout mutants at different hybridization conditions and PMTs Keywords: SuperSeries Refer to individual Series
Project description:Transcription profiling of the DSF regulon in Xanthomonas oryzae pv. oryzae (Xoo) using wild type and the rpfF mutant. Cell-cell signaling mediated by the quorum sensing molecule known as Diffusible Signaling factor (DSF) is required for virulence of Xanthomonas group of plant pathogens. DSF in different Xanthomonas and the closely related plant pathogen Xylella fastidiosa regulates diverse traits in a strain specific manner. The transcriptional profiling performed in this study is to elucidate the traits regulated by DSF from the Indian isolate of Xanthomonas oryzae pv. oryzae, which exhibits traits very different from other Xanthomonas group of plant pathogen. In this study, transcription analysis was done between a wild type Xanthomonas oryzae pv. oryzae strain and an isogenic strain that has a mutation in the DSF biosynthetic gene rpfF.