Project description:We employed a proteogenomics workflow to identify microproteins encoded by small Open Reading Frames (ORFs) in the genome of Mycobacterium smegmatis strain mc²155.
Project description:L-asparaginase (E.C.3.5.1.1) is a well-known agent that prevents the formation of acrylamide both in the food industry and against childhood acute lymphoblastic leukemia in clinical settings. The disadvantages of L-asparaginase, which restrict its industrial application, include its narrow range of pH stability and low thermostability. In this study, a novel L-asparaginase from Mycobacterium gordonae (GmASNase) was cloned and expressed in Escherichia coli BL21 (DE3). GmASNase was found to be a tetramer with a monomeric size of 32 kDa, sharing only 32% structural identity with Helicobacter pylori L-asparaginases in the Protein Data Bank database. The purified GmASNase had the highest specific activity of 486.65 IU mg-1 at pH 9.0 and 50 °C. In addition, GmASNase possessed superior properties in terms of stability at a wide pH range of 5.0-11.0 and activity at temperatures below 40 °C. Moreover, GmASNase displayed high substrate specificity towards L-asparagine with Km, kcat, and kcat/Km values of 6.025 mM, 11,864.71 min-1 and 1969.25 mM-1min-1, respectively. To evaluate its ability to mitigate acrylamide, GmASNase was used to treat potato chips prior to frying, where the acrylamide content decreased by 65.09% compared with the untreated control. These results suggest that GmASNase is a potential candidate for applications in the food industry.
Project description:Related surrogate species are often used to study the molecular basis of pathogenicity of a pathogen on the basis of a shared set of biological features generally attributable to a shared core genome consisting of orthologous genes. An important and understudied aspect, however, is the extent to which regulatory features affecting the expression of such shared genes are present in both species. Here we report on an analysis of whole transcriptome maps for an important member of the TB complex Mycobacterium bovis and a closely related model organism for studying mycobacterial pathogenicity Mycobacterium marinum.