Project description:We collected β-hemolytic streptococci (1,611 isolates) from patients with invasive streptococcal infections in Japan during April 2010-March 2013. Streptococcus dysgalactiae subsp. equisimilis (SDSE) was most common (n = 693); 99% of patients with SDSE infections were elderly (mean age 75 years, SD ±15 years). We aimed to clarify molecular and epidemiologic characteristics of SDSE isolates and features of patient infections. Bacteremia with no identified focus of origin and cellulitis were the most prevalent manifestations; otherwise, clinical manifestations resembled those of S. pyogenes infections. Clinical manifestations also differed by patient's age. SDSE isolates were classified into 34 emm types; stG6792 was most prevalent (27.1%), followed by stG485 and stG245. Mortality rates did not differ according to emm types. Multilocus sequence typing identified 46 sequence types and 12 novel types. Types possessing macrolide- and quinolone-resistance genes were 18.4% and 2.6%, respectively; none showed β-lactam resistance. Among aging populations, invasive SDSE infections are an increasing risk.
Project description:Streptococcus dysgalactiae subsp. equisimilis (SDSE) is an emerging human pathogen that causes severe invasive streptococcal diseases. Recent reports have shown that SDSE exhibits high pathogenicity with different mechanisms from that of Streptococcus pyogenes, although the two streptococci possess some common virulence factors such as streptolysin, streptokinase, and cell-binding proteins. To date, only a few studies have examined the variety of mechanisms expressing the pathogenicity of SDSE. Among nine SDSE clinical isolates sequenced in this study, we present in vitro and in vivo analyses of KNZ01 and KNZ03, whose emm and multilocus species types (MLSTs) are prevalent in Japan and other countries. For the comparison of pathogenicity, we also utilized the ATCC 12394 strain. The whole-genome analysis showed that KNZ03 and ATCC 12394 are categorized into an identical clonal complex by MLST and are phylogenetically close. However, the three strains exhibited different characteristics for pathogenicity in vitro; ATCC 12394 showed significant cytotoxicity to human keratinocytes and release of streptolysin O (SLO) compared to KNZ01 and KNZ03; KNZ03 exhibited significantly high hemolytic activity, but did not secrete SLO. KNZ01 and KNZ03 adhered to human keratinocytes at a higher rate than ATCC 12394; KNZ03 showed a higher rate of survival after a brief (30 min) incubation with human neutrophils compared to the other two strains; also, KNZ01 grew more rapidly in the presence of human serum. In vivo subcutaneous infection commonly resulted in ulcer formation in the three strains 7 days after infection. KNZ01-infected mice showed significant body weight loss 2 days after infection. Besides, on post-infection day 2, only KNZ01 remained in the cutaneous tissues of mice. Scanning electron microscopy analysis revealed that KNZ01 formed an extracellular structure (biofilm), which was probably composed of cell wall-anchoring proteins, in the presence of glucose and human serum. The extracellular structure of ATCC 12394 was also changed dramatically in response to culture conditions, whereas that of KNZ03 did not. Our study proposed that each SDSE strain possesses different virulence factors characteristics for mediating pathogenicity in humans.
Project description:Streptococcus dysgalactiae subsp. equisimilis (SDSE) is an emerging human pathogen that causes life-threatening invasive infections such as streptococcal toxic shock syndrome. Recent epidemiological studies reveal that invasive SDSE infections have been increasing in Asia, Europe, and the United States. Almost all SDSE carry Lancefield group G or C antigen. We have determined the complete genome sequence of a human group C SDSE 167 strain. A comparison of its sequence with that of four SDSE strains, three in Lancefield group G and one in Lancefield group A, showed approximately 90% coverage. Most regions showing little or no homology were located in the prophages. There was no evidence of massive rearrangement in the genome of SDSE 167. Bayesian phylogeny using entire genome sequences showed that the most recent common ancestor of the five SDSE strains appeared 446 years ago. Interestingly, we found that SDSE 167 harbors sugar metabolizing enzymes in a unique region and streptodornase in the phage region, which presumably contribute to the degradation of host tissues and the prompted covRS mutation, respectively. A comparison of these five SDSE strains, which differ in Lancefield group antigens, revealed a gene cluster presumably responsible for the synthesis of the antigenic determinant. These results may provide the basis for molecular epidemiological research of SDSE.
Project description:Streptococcus dysgalactiae subsp. equisimilis (SDSE) causes cellulitis, bacteremia, and invasive diseases, such as streptococcal toxic shock syndrome. Although SDSE infection is more prevalent among elderly individuals and those with diabetes mellitus than infections with Streptococcus pyogenes (Group A streptococci; GAS) and Streptococcus agalactiae (Group B streptococci; GBS), the mechanisms underlying the pathogenicity of SDSE remain unknown. SDSE possesses a gene hylD encoding a hyaluronate lyase (HylD), whose homologue (HylB) is involved in pathogenicity of GBS, while the role of HylD has not been characterized. In this study, we focused on the enzyme HylD produced by SDSE; HylD cleaves hyaluronate (HA) and generates unsaturated disaccharides via a ?-elimination reaction. Hyaluronate-agar plate assays revealed that SDSE promoted dramatic HA degradation. SDSE expresses both HylD and an unsaturated glucuronyl hydrolase (UGL) that catalyzes the degradation of HA-derived oligosaccharides; as such, SDSE was more effective at HA degradation than other ?-hemolytic streptococci, including GAS and GBS. Although HylD shows some homology to HylB, a similar enzyme produced by GBS, HylD exhibited significantly higher enzymatic activity than HylB at pH 6.0, conditions that are detected in the skin of both elderly individuals and those with diabetes mellitus. We also detected upregulation of transcripts from hylD and ugl genes from SDSE wild-type collected from the mouse peritoneal cavity; upregulated expression of ugl was not observed in ?hylD SDSE mutants. These results suggested that disaccharides produced by the actions of HylD are capable of triggering downstream pathways that catalyze their destruction. Furthermore, we determined that infection with SDSE?hylD was significantly less lethal than infection with the parent strain. When mouse skin wounds were infected for 2 days, intensive infiltration of neutrophils was observed around the wound areas infected with SDSE wild-type but not SDSE?hylD. Our investigation suggested that HylD and UGL play important roles in nutrient acquisition from hosts, followed by the bacterial pathogenicity damaging host tissues.
Project description:Streptococcus dysgalactiae subsp. equisimilis (groups C and G streptococci [GCS/GGS]) is an increasingly recognized human pathogen, although it may follow indirect pathways. Prospective surveillance of selected households in 3 remote Aboriginal communities in Australia provided 337 GCS/GGS isolates that were emm sequence-typed. Lancefield group C isolates (GCS) were localized to specific households and group G isolates (GGS) were more evenly distributed. GCS/GGS was more frequently recovered from the throat than group A streptococci (GAS [S. pyogenes]) but rarely recovered from skin sores, and then only with Staphylococcus aureus or GAS. Symptomatic GGS/GGC pharyngitis was also rare. Specific emm sequence types of GCS/GGS did not appear to cycle through the communities (sequential strain replacement) in a manner suggesting acquisition of type-specific immunity. These communities already have high levels of streptococcal and poststreptococcal disease. GCS/GGS may increase in importance as it acquires key virulence factors from GAS by lateral gene transfer.
Project description:The term group A Streptococcus is considered synonymous for the species Streptococcus pyogenes. We describe an emergent invasive S. dysgalactiae subspecies equisimilis lineage that obtained the group A antigen through a single ancestral recombination event between a group C S. dysgalactiae subsp. equisimilis strain and a group A S. pyogenes strain.
Project description:Streptococcus dysgalactiae subspecies equisimilis (SDSE) is an emerging pathogen in animals and humans. Herein, we describe two clinical swine cases of SDSE infection presenting with lameness, neurological signs, or sudden death. Pathological examination indicated suppurative arthritis, encephalitis, and multifocal abscesses in kidney and heart. The ?-hemolytic colonies obtained from joint samples of each case were identified as SDSE. The two isolates had low minimum inhibitory concentrations for ?-lactams, and they presented the same virulence gene profile (slo-/sagA?/pSTKP8?). Molecular analysis by multilocus sequence typing identified the SDSE isolates from cases 1 and 2 as sequence types 315 and 252, respectively.
Project description:Streptococcus dysgalactiae subsp. equisimilis strains (group G streptococcus [GGS]) are largely defined as commensal organisms, which are closely related to the well-defined human pathogen, the group A streptococcus (GAS). While lateral gene transfers are emerging as a common theme in these species, little is known about the mechanisms and role of these transfers and their effect on the population structure of streptococci in nature. It is now becoming evident that bacteriophages are major contributors to the genotypic diversity of GAS and, consequently, are pivotal to the GAS strain structure. Furthermore, bacteriophages are strongly associated with altering the pathogenic potential of GAS. In contrast, little is know about phages from GGS and their role in the population dynamics of GGS. In this study we report the first complete genome sequence of a GGS phage, Phi3396. Exhibiting high homology to the GAS phage Phi315.1, the chimeric nature of Phi3396 is unraveled to reveal evidence of extensive ongoing genetic diversity and dissemination of streptococcal phages in nature. Furthermore, we expand on our recent findings to identify inducible Phi3396 homologues in GAS from a region of endemicity for GAS and GGS infection. Together, these findings provide new insights into not only the population structure of GGS but also the overall population structure of the streptococcal genus and the emergence of pathogenic variants.
Project description:?-Hemolytic group C and group G streptococci (GCS-GGS; Streptococcus dysgalactiae subsp. equisimilis) emerged as human pathogens in the late 1970s. We report here the draft genome sequences of four genetically distinct human strains of GCS-GGS isolated between the 1960s and 1980s. Comparative analysis of these genomes may provide a deeper understanding of GCS-GGS genome and virulence evolution.