Project description:Here, we investigated the impact of Stx2 phage carriage on Escherichia coli (E. coli) K-12 MG1655 host gene expression. Using quantitative RNA-seq analysis, we compared the transcriptome of naïve MG1655 and the lysogens carrying the Stx2 phage of the 2011 E. coli O104:H4 outbreak strain or of the E. coli O157:H7 strain PA8, which share high degree of sequence similarity.
Project description:After the attachment of the lytic phage T4 to Escherichia coli cells, 1% E. coli cells showed an approximately 40-fold increase in mutant frequency. They were designated as mutator A global transcriptome analysis using microarrays was conducted to determine the difference between parental strain and mutators, and the host responce after adsorption of the phage and the ghost.
Project description:mRNA expression profiles between Ym1+Ly6Chi monocytes and Ym1-Ly6Chi monocytes from LPS-treated mice were analyzed by RNA-sequencing
Project description:Recently, we developed an in vivo technology to draw the interacting map of a specific small regulatory RNA (sRNA). We called it MAPS for MS2-affinity purification coupled with RNA sequencing. Using this technology, we already revealed the targetome of RyhB, RybB and DsrA, three well-characterized sRNAs in Escherichia coli. In this study, we performed MAPS with CyaR sRNA.
Project description:After the attachment of the lytic phage T4 to Escherichia coli cells, 1% E. coli cells showed an approximately 40-fold increase in mutant frequency. They were designated as mutator A global transcriptome analysis using microarrays was conducted to determine the difference between parental strain and mutators.
Project description:Despite the overwhelming information about sRNAs, one of the biggest challenges in the sRNA field is characterizing sRNA targetomes. Thus, we develop a novel method to identify RNAs that interact with a specific sRNA, regardless of the type of regulation (positive or negative) or targets (mRNA, tRNA, sRNA). This method is called MAPS: MS2 affinity purification coupled with RNA sequencing. As proof of principle, we identified RNAs bound to RybB, a well-characterized E. coli sRNA. Identification of RNAs co-purified with MS2-RybB in a rne131 ΔrybB strain. RybB (without MS2) was used as control