Project description:Clostridioides difficile has significant clinical importance as a leading cause of healthcare-associated infections, with symptoms ranging from mild diarrhoea to severe colitis, and possible life-threatening complications. C. difficile ribotype (RT) 002, mainly associated with MLST sequence type (ST) 8, is one of the most common RTs found in humans. This study aimed at investigating the genetic characteristics of 537 C. difficile genomes of ST8/RT002. To this end, we sequenced 298 C. difficile strains representing a new European genome collection, with strains from Germany, Denmark, France and Portugal. These sequences were analysed against a global dataset consisting of 1,437 ST8 genomes available through Enterobase. Our results showed close genetic relatedness among the studied ST8 genomes, a diverse array of antimicrobial resistance (AMR) genes and the presence of multiple mobile elements. Notably, the pangenome analysis revealed an open genomic structure. ST8 shows relatively low overall variation. Thus, clonal isolates were found across different One Health sectors (humans, animals, environment and food), time periods, and geographical locations, suggesting the lineage's stability and a universal environmental source. Importantly, this stability did not hinder the acquisition of AMR genes, emphasizing the adaptability of this bacterium to different selective pressures. Although only 2.4 % (41/1,735) of the studied genomes originated from non-human sources, such as animals, food, or the environment, we identified 9 cross-sectoral core genome multilocus sequence typing (cgMLST) clusters. Our study highlights the importance of ST8 as a prominent lineage of C. difficile with critical implications in the context of One Health. In addition, these findings strongly support the need for continued surveillance and investigation of non-human samples to gain a more comprehensive understanding of the epidemiology of C. difficile.
Project description:Clostridioides difficile infection (CDI) is a common cause of nosocomial diarrhea and can sometimes lead to pseudo-membranous colitis and toxic megacolon. We previously reported that the PCR ribotype 002 was a common C. difficile ribotype in Hong Kong that was associated with increased mortality. In this study, we assessed in vitro bacteriological characteristics and in vivo virulence of ribotype 002 compared to other common ribotypes, including ribotypes 012, 014 and 046. We observed significantly higher toxin A (p < 0.05) and toxin B (p < 0.05) production, sporulation (p < 0.001) and germination rates (p < 0.0001) in ribotype 002 than other common ribotypes. In a murine model of C. difficile infection, ribotype 002 caused significantly more weight loss (p < 0.001) and histological damage (p < 0.001) than other common ribotypes. These findings may have contributed to the higher prevalence and mortality observed, and provided mechanistic insights that can help public surveillance and develop novel therapeutics to combat against this infection.
Project description:The Clostridioides difficile toxins TcdA and TcdB are responsible for diarrhea and colitis. The aim of this project was to explore the effects of the toxins on epithelial barrier function and the molecular mechanisms for diarrhea and inflammation. RNA-seq of toxin-treated intestinal cell monolayers was performed to describe the C. difficile-mediated effects. mRNA profiles from intestinale epithelial cells were generated by deep sequencing using Illumina NovaSeq 6000. This data provide the basis for subsequent upstream regulator analysis.