Project description:Engineered live bacteria could provide a new modality for treating lung infections , a major cause of mortality worldwide. Here, we engineered a genome-reduced human lung bacterium, Mycoplasma pneumoniae, to treat ventilator-associated pneumonia (VAP), a disease with high hospital mortality when associated with Pseudomonas aeruginosa biofilms. After validating the biosafety of an attenuated M. pneumoniae chassis in mice, we introduced four transgenes in the chromosome by transposition, to implement bactericidal and biofilm degradation activities. We show that this engineered strain has high efficacy against an acute P. aeruginosa lung infection in a mouse model. In addition, we demonstrate that the engineered strain can dissolve biofilms formed in endotracheal tubes of VAP patients and can be combined with antibiotics targeting the peptidoglycan layer to increase efficacy against gram-positive and gram-negative bacteria. We expect that our
Project description:Objective: Identify genes that are differentially expressed between critically ill trauma patients who go on to develop ventilator-associated pneumonia (VAP) compared to similar patients who do not develop VAP Using gene expression differences, develop a model that predicts which patients are at greater risk of developing VAP. Prospective observational study, analysis of gene expression in 20 patient samples, 10 that developed ventilator-associated pneumonia, 10 that did not
Project description:The onset of an infection-specific transcriptional program precedes the clinical diagnosis in patients who developed Ventilator-associated pneumonia (VAP). Ventilator-associated tracheobronchitis (VAT) is another respiratory infection affecting<br><br>outcomes in intubated patients, but interactions between VAT and VAP remains unknown.
Project description:This project was a prospective translational study aimed at evaluating gene expression profiles (GEP) of patients with ventilator-associated pneumonia (VAP) . GEP of VAP were compared with a control group of patients which did not developed ventilator-associated lower respiratory tract infection despite being subjected to mechanical ventilation.
Project description:Gene expression profiles of two Pseudomonas aeruginosa taxonomic outlier clinical isolates, CLJ1 and CLJ3 [CLJ3] Pseudomonas aeruginosa taxonomic outliers emerged recently as infectious for humans, provoking hemorrhagic pneumonia. Those bacteria lack classical type III secretion system, and utilize the pore-forming toxin for infection. Two clones CLJ1 and CLJ3 belonging to these taxonomic outliers have been isolated from the same patient at two different times during hospitalization. P. aeruginosa CLJ3 displays antibiotic resistance phenotype, while CLJ1 is more cytotoxic on epithelial and endothelial cells.
Project description:Gene expression profiles of two Pseudomonas aeruginosa taxonomic outlier clinical isolates, CLJ1 and CLJ3 [CLJ1] Pseudomonas aeruginosa taxonomic outliers emerged recently as infectious for humans, provoking hemorrhagic pneumonia. Those bacteria lack classical type III secretion system, and utilize the pore-forming toxin for infection. Two clones CLJ1 and CLJ3 belonging to these taxonomic outliers have been isolated from the same patient at two different times during hospitalization. P. aeruginosa CLJ3 displays antibiotic resistance phenotype, while CLJ1 is more cytotoxic on epithelial and endothelial cells.
2018-11-30 | GSE123106 | GEO
Project description:The Lower Respiratory Tract Microbiota is related to the outcome of Pseudomonas Aeruginosa Ventilator-Associated Pneumonia Patients