Project description:Angiocrine signaling by liver sinusoidal endothelial cells (LSEC) regulates liver functions such as liver growth, metabolic maturation, and regeneration. Recently, we identified GATA4 as the master regulator of LSEC specification during development. Here, we studied endothelial GATA4 in the adult liver and in hepatic disease pathogenesis. We generated adult Clec4g-icretg/0xGata4fl/fl (Gata4LSEC KO) mice with deficiency of Gata4 in LSEC. Livers were analyzed by histology, electron microscopy, immunohistochemistry/immunofluorescence, in-situ hybridization, and by expression profiling and ATAC-sequencing of isolated LSEC. For liver regeneration, partial hepatectomy was performed. As models of liver fibrosis, CDAA diet and chronic CCl4 exposure were applied. Human single cell RNAseq data sets were analyzed for endothelial alterations in healthy and cirrhotic livers. Genetic Gata4 deficiency in LSEC in adult mice caused perisinusoidal liver fibrosis, hepatopathy and impaired liver regeneration. Sinusoidal capillarization and LSEC-to-continuous endothelial transdifferentiation were accompanied by a profibrotic angiocrine switch including de novo endothelial expression of hepatic stellate cell-activating cytokine PDGFB. Increased chromatin accessibility and amplification by activated Myc mediated angiocrine PDGFB expression. In CDAA diet-induced perisinusoidal liver fibrosis, LSEC showed repression of GATA4, activation of MYC and the profibrotic angiocrine switch already detected in Gata4LSEC KO mice. Comparison of CDAA-fed Gata4LSEC KO and control mice demonstrated that endothelial Gata4 indeed protects from dietary-induced perisinusoidal liver fibrosis. In human cirrhotic livers, Gata4-positive LSEC and endothelial Gata4 target genes were reduced, while non-LSEC endothelial cells and Myc target genes including PDGFB were enriched. Endothelial GATA4 protects from perisinusoidal liver fibrosis by repressing MYC activation and profibrotic angiocrine signaling on the chromatin level. Therapies targeting the GATA4/MYC/PDGFB/PDGFRβ axis offer a promising strategy for the prevention and treatment of liver fibrosis.
Project description:Angiocrine signaling by liver sinusoidal endothelial cells (LSEC) regulates liver functions such as liver growth, metabolic maturation, and regeneration. Recently, we identified GATA4 as the master regulator of LSEC specification during development. Here, we studied endothelial GATA4 in the adult liver and in hepatic disease pathogenesis. We generated adult Clec4g-icretg/0xGata4fl/fl (Gata4LSEC KO) mice with deficiency of Gata4 in LSEC. Livers were analyzed by histology, electron microscopy, immunohistochemistry/immunofluorescence, in-situ hybridization, and by expression profiling and ATAC-sequencing of isolated LSEC. For liver regeneration, partial hepatectomy was performed. As models of liver fibrosis, CDAA diet and chronic CCl4 exposure were applied. Human single cell RNAseq data sets were analyzed for endothelial alterations in healthy and cirrhotic livers. Genetic Gata4 deficiency in LSEC in adult mice caused perisinusoidal liver fibrosis, hepatopathy and impaired liver regeneration. Sinusoidal capillarization and LSEC-to-continuous endothelial transdifferentiation were accompanied by a profibrotic angiocrine switch including de novo endothelial expression of hepatic stellate cell-activating cytokine PDGFB. Increased chromatin accessibility and amplification by activated Myc mediated angiocrine PDGFB expression. In CDAA diet-induced perisinusoidal liver fibrosis, LSEC showed repression of GATA4, activation of MYC and the profibrotic angiocrine switch already detected in Gata4LSEC KO mice. Comparison of CDAA-fed Gata4LSEC KO and control mice demonstrated that endothelial Gata4 indeed protects from dietary-induced perisinusoidal liver fibrosis. In human cirrhotic livers, Gata4-positive LSEC and endothelial Gata4 target genes were reduced, while non-LSEC endothelial cells and Myc target genes including PDGFB were enriched. Endothelial GATA4 protects from perisinusoidal liver fibrosis by repressing MYC activation and profibrotic angiocrine signaling on the chromatin level. Therapies targeting the GATA4/MYC/PDGFB/PDGFRβ axis offer a promising strategy for the prevention and treatment of liver fibrosis.
Project description:Liver sinusoidal endothelial cells (LSEC) represent a unique, organ-specific type of discontinuous endothelial cells. LSEC instruct the hepatic vascular niche by paracrine-acting angiocrine factors. Recently, we have shown that LSEC-specific transcriptional regulator GATA4 induces expression of BMP2 in cultured endothelial cells (EC) in vitro. Furthermore, angiocrine Bmp2 signaling in the liver in vivo was demonstrated to control iron homeostasis. Here, we investigated GATA4-dependent autocrine BMP2 signaling in endothelial cells by gene expression profiling. GATA4 induced a large cluster of inflammatory endothelial response genes in cultured EC, which is similar to previously identified virus-induced and interferon-associated responses. Treating the cells with the BMP2 inhibitor Noggin counter-regulated the GATA4-dependent inflammatory phenotype of EC, indicating that BMP2 is indeed the major driver. In contrast to continuous EC, LSEC were less prone to activation by BMP2. Notably, GATA4-dependent induction of the inflammatory EC response gene cluster was attenuated by over-expression of the LSEC-specific transcriptional modifier LMO3 while hepatocyte activation was fully preserved, indicating conserved BMP2 synthesis. In summary, our data suggest that transcriptional counter-regulation by GATA4 and LMO3 in LSEC prevents autocrine induction of an inflammatory phenotype, while maintaining angiocrine BMP2-mediated cell communication in the liver vascular niche.
Project description:Liver sinusoidal endothelial cells (LSEC) represent a unique, organ-specific type of discontinuous endothelial cells. LSEC instruct the hepatic vascular niche by paracrine-acting angiocrine factors. Recently, we have shown that LSEC-specific transcriptional regulator GATA4 induces expression of BMP2 in cultured endothelial cells (EC) in vitro. Furthermore, angiocrine Bmp2 signaling in the liver in vivo was demonstrated to control iron homeostasis. Here, we investigated GATA4-dependent autocrine BMP2 signaling in endothelial cells by gene expression profiling. GATA4 induced a large cluster of inflammatory endothelial response genes in cultured EC, which is similar to previously identified virus-induced and interferon-associated responses. Treating the cells with the BMP2 inhibitor Noggin counter-regulated the GATA4-dependent inflammatory phenotype of EC, indicating that BMP2 is indeed the major driver. In contrast to continuous EC, LSEC were less prone to activation by BMP2. Notably, GATA4-dependent induction of the inflammatory EC response gene cluster was attenuated by over-expression of the LSEC-specific transcriptional modifier LMO3 while hepatocyte activation was fully preserved, indicating conserved BMP2 synthesis. In summary, our data suggest that transcriptional counter-regulation by GATA4 and LMO3 in LSEC prevents autocrine induction of an inflammatory phenotype, while maintaining angiocrine BMP2-mediated cell communication in the liver vascular niche.
Project description:Microvascular endothelial cells (EC) are increasingly recognized as organ-specific gatekeepers of their microenvironment. Microvascular EC instruct neighboring cells in their organ-specific vascular niches by angiocrine factors that comprise secreted growth factors/angiokines, but also extracellular matrix molecules and transmembrane proteins. The molecular regulators, however, that drive organ-specific microvascular transcriptional programs and thereby regulate angiodiversity, are largely elusive. Opposite to continuous barrier-forming EC, liver sinusoids are a prime model of discontinuous, permeable micro-vessels. Here, we show that transcription factor GATA4 controls liver sinusoidal endothelial (LSEC) specification and function. LSEC-restricted deletion of GATA4 caused transformation of discontinuous liver sinusoids into continuous capillaries. Capillarization was characterized by ectopic basement membrane deposition and formation of an abundantly VE-Cadherin expressing continuous endothelium. Correspondingly, ectopic expression of GATA4 in cultured continuous EC mediated downregulation of continuous EC transcripts and upregulation of LSEC genes. Regarding angiocrine functions, the switch from discontinuous LSEC to continuous EC during embryogenesis caused liver hypoplasia, fibrosis, and impaired colonization by hematopoietic progenitor cells resulting in anemia and embryonic lethality. Thus, GATA4 acts as master regulator of hepatic microvascular specification and acquisition of organ-specific vascular competence indispensable for liver development. The data also establish an essential role of the hepatic microvasculature for embryonic hematopoiesis.
Project description:Microvascular endothelial cells (EC) are increasingly recognized as organ-specific gatekeepers of their microenvironment. Microvascular EC instruct neighboring cells in their organ-specific vascular niches by angiocrine factors that comprise secreted growth factors/angiokines, but also extracellular matrix molecules and transmembrane proteins. The molecular regulators, however, that drive organ-specific microvascular transcriptional programs and thereby regulate angiodiversity, are largely elusive. Opposite to continuous barrier-forming EC, liver sinusoids are a prime model of discontinuous, permeable micro-vessels. Here, we show that transcription factor GATA4 controls liver sinusoidal endothelial (LSEC) specification and function. LSEC-restricted deletion of GATA4 caused transformation of discontinuous liver sinusoids into continuous capillaries. Capillarization was characterized by ectopic basement membrane deposition and formation of an abundantly VE-Cadherin expressing continuous endothelium. Correspondingly, ectopic expression of GATA4 in cultured continuous EC mediated downregulation of continuous EC transcripts and upregulation of LSEC genes. Regarding angiocrine functions, the switch from discontinuous LSEC to continuous EC during embryogenesis caused liver hypoplasia, fibrosis, and impaired colonization by hematopoietic progenitor cells resulting in anemia and embryonic lethality. Thus, GATA4 acts as master regulator of hepatic microvascular specification and acquisition of organ-specific vascular competence indispensable for liver development. The data also establish an essential role of the hepatic microvasculature for embryonic hematopoiesis.