Project description:This is genome-scale metabolic model of Candida albicans as the representative yeast species for the clade CUG-Ser1. This model was generated through homology search using a fungal pan-GEM largely based on Yeast8 for Saccharomyces cerevisiae, in addition to manual curation.
This model has been produced by the Yeast-Species-GEMs project from Sysbio (www.sysbio.se). This is model version 1.0.0 accompanying the publication (DOI: 10.15252/msb.202110427), currently hosted on BioModels Database and identified by MODEL2109130014. Further curations of this model will be tracked in the GitHub repository: https://github.com/SysBioChalmers/Yeast-Species-GEMs
Models for species of the same clade includes: Babjeviella inositovora; Candida albicans; Candida auris; Candida carpophila; Candida dubliniensis; Hyphopichia homilentoma; Candida intermedia; Candida orthopsilosis; Candida parapsilosis; Candida sojae; Suhomyces tanzawaensis; Yamadazyma tenuis; Candida tropicalis; Clavispora lusitaniae; Debaryomyces hansenii; Hyphopichia burtonii; Lodderomyces elongisporus; Metschnikowia aberdeeniae; Metschnikowia arizonensis; Metschnikowia bicuspidata var. bicuspidata; Metschnikowia borealis; Metschnikowia bowlesiae; Metschnikowia cerradonensis; Metschnikowia continentalis; Metschnikowia dekortorum; Metschnikowia drakensbergensis; Metschnikowia hamakuensis; Metschnikowia hawaiiensis; Metschnikowia hibisci; Metschnikowia ipomoeae; Metschnikowia kamakouana; Metschnikowia kipukae; Metschnikowia lochheadii; Metschnikowia matae var. matae; Metschnikowia matae var. maris; Metschnikowia mauinuiana; Metschnikowia proteae; Metschnikowia santaceciliae; Metschnikowia shivogae; Metschnikowia similis; Meyerozyma guilliermondii; Millerozyma acaciae; Priceomyces haplophilus; Scheffersomyces lignosus; Scheffersomyces stipitis; Spathaspora arborariae; Spathaspora girioi; Spathaspora gorwiae; Spathaspora hagerdaliae; Spathaspora passalidarum; Wickerhamia fluorescens; Priceomyces medius; Candida athensensis; Candida schatavii; Candida restingae; Aciculoconidium aculeatum; Kodamaea laetipori; Danielozyma ontarioensis; Candida oregonensis; Candida fructus; Candida corydali; Cephaloascus albidus; Cephaloascus fragrans; Suhomyces pyralidae; Suhomyces canberraensis; Suhomyces emberorum; Teunomyces kruisii; Teunomyces gatunensis; Teunomyces cretensis; Yamadazyma nakazawae; Priceomyces carsonii; Priceomyces castillae; Candida fragi; Hyphopichia heimii; Candida blattae; Yamadazyma philogaea; Yamadazyma scolyti; Meyerozyma caribbica; Kurtzmaniella cleridarum; Kodamaea ohmeri; Candida rhagii; Candida gotoi; Candida heveicola; Debaryomyces prosopidis; Debaryomyces nepalensis; Debaryomyces maramus; Candida hawaiiana; Debaryomyces subglobosus; Debaryomyces fabryi; Candida tammaniensis; Candida wancherniae; Candida ascalaphidarum; Candida golubevii; Candida gorgasii. These models are available in the zip file.
To cite BioModels, please use: V Chelliah et al; BioModels: ten-year anniversary. Nucleic Acids Res 2015; 43 (D1): D542-D548. To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to MIT License for more information.
Project description:modENCODE_submission_5986 This submission comes from a modENCODE project of Jason Lieb. For full list of modENCODE projects, see http://www.genome.gov/26524648 Project Goal: The focus of our analysis will be elements that specify nucleosome positioning and occupancy, control domains of gene expression, induce repression of the X chromosome, guide mitotic segregation and genome duplication, govern homolog pairing and recombination during meiosis, and organize chromosome positioning within the nucleus. Our 126 strategically selected targets include RNA polymerase II isoforms, dosage-compensation proteins, centromere components, homolog-pairing facilitators, recombination markers, and nuclear-envelope constituents. We will integrate information generated with existing knowledge on the biology of the targets and perform ChIP-seq analysis on mutant and RNAi extracts lacking selected target proteins. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf EXPERIMENT TYPE: CHIP-seq. BIOLOGICAL SOURCE: Strain: N2; Developmental Stage: L3 Larva; Genotype: wild type; Sex: mixed Male and Hermaphrodite population; EXPERIMENTAL FACTORS: Developmental Stage L3 Larva; temp (temperature) 20 degree celsius; Strain N2; Antibody NURF-1 SDQ3525 (target is NURF-1)
Project description:Trithorax group (TrxG) proteins counteract Polycomb silencing by an as yet uncharacterized mechanism. A well-known member of the TrxG is the histone methyltransferase Absent, Small, or Homeotic discs 1 (ASH1). In Drosophila ASH1 is needed for the maintenance of Hox gene expression throughout development, which is tightly coupled to preservation of cell identity. In order to understand the molecular function of ASH1 in this process, we performed affinity purification of tandem-tagged ASH1 followed by mass spectrometry (AP-MS) and identified FSH, another member of the TrxG as interaction partner. Here we provide genome-wide chromatin maps of both proteins based on ChIP-seq. Our Dataset comprises of 4 ChIP-seq samples using chromatin from S2 cells which was immunoprecipitated, using antibodies against Ash1, FSH-L and FSH-SL.
Project description:Seeds are comprised of three major parts of distinct parental origin: the seed coat, embryo, and endosperm. The maternally-derived seed coat is important for nurturing and protecting the seeds during development. By contrast, the embryo and the endosperm are derived from a double fertilization event, where one sperm fertilizes the egg to form the diploid zygote and the other sperm fertilizes the central cell to form the triploid endosperm. Each seed part undergoes distinct developmental programs during seed development. What methylation changes occur in the different seed parts, if any, remains unknown. To uncover the possible role of DNA methylation in different parts of the seed, we characterized the methylome of three major parts of cotyledon stage seeds, the seed coat, embryonic cotyledons, and embryonic axis, using Illumina sequencing. Illumina sequencing of bisulfite-converted genomic DNA from three parts of soybean cotyledon stage seeds: seed coat (COT-SC), embryonic cotyledons (COT-COT), and embryonic axis (COT-AX).