Project description:Here we used next generation sequencing (NGS), to determine the transcriptional profile of blood cells exposed to particulate matter to contribute to the clarification of the importance of deregulated molecules in the molecular pathways involved in the inflammation. For this, blood cells from six adult healthy donors were treated with particulate matter.
Project description:This study aimed to shed light on the gene regulatory networks underlying plant leaf responses to air particulate matter. Our investigation focused on autochthonous shrubs of laurel (Laurus nobilis L.) grown in pots located in two contrasting areas: a highly polluted traffic road and rural countryside within the same town (Altopascio, Lucca, Italy). RNA-seq data were related to leaf morphological traits and air particulate matter, allowing to identify key players in modulating the capabilities of plants to phyllo-remediate high air particulate matter levels in urban environment.
Project description:Open tenotomy of the Achilles tendon of 6 rats was performed. The animals were divided into two groups according to exposure of PM2.5 (particulate matter less than 2.5 µm): control group (Non-PM group) or PM exposure group (PM group). After 6 weeks of PM exposure, the tendon RNA was extracted and anlyzed.
Project description:This study aimed to shed light on the gene regulatory networks underlying plant leaf responses to air particulate matter. Our investigation focused on shrubs of Photinia x fraseri grown in pots located in two contrasting areas: a highly polluted traffic road and rural countryside within the same town (Altopascio, Lucca, Italy). RNA-seq data were related to leaf morphological traitsand air particulate matter, allowing to identify key players in modulating the capabilities of plants to phyllo-remediate high air particulate matter levels in urban environment.