Single-cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human [human]
Ontology highlight
ABSTRACT: Single-cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human [human]
Project description:Smooth muscle cells (SMC) play significant roles in atherosclerosis via phenotypic switching, a pathological process in which SMC dedifferentiation, migration and transdifferentiation into other cell types. Yet, how SMC contribute to pathophysiology of atherosclerosis remains elusive. To reveal the trajectories of SMC transdifferentiation during atherosclerosis and to identify molecular targets for disease therapy, we combined SMC fate mapping and single-cell RNA sequencing of both mouse and human atherosclerotic plaques.
Project description:Smooth muscle cells (SMC) play significant roles in atherosclerosis via phenotypic switching, a pathological process in which SMC dedifferentiation, migration and transdifferentiation into other cell types. Yet, how SMC contribute to pathophysiology of atherosclerosis remains elusive. To reveal the trajectories of SMC transdifferentiation during atherosclerosis and to identify molecular targets for disease therapy, we combined SMC fate mapping and single-cell RNA sequencing of both mouse and human atherosclerotic plaques.
Project description:Single-cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human
Project description:Single-cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human [mouse]
Project description:Vascular smooth muscle cells (VSMCs) within atherosclerotic lesions undergo a phenotypic switching in a KLF4-dependent manner. Glycolysis plays important roles in transdifferentiation of somatic cells, however, it is unclear whether and how KLF4 mediates the link between glycolytic switch and VSMCs phenotypic transitions. Here, we show that KLF4 upregulation accompanies VSMCs phenotypic switching in atherosclerotic lesions. KLF4 enhances the metabolic switch to glycolysis through increasing PFKFB3 expression. Inhibiting glycolysis suppresses KLF4-induced VSMCs phenotypic switching, demonstrating that glycolytic shift is required for VSMCs phenotypic switching. Mechanistically, KLF4 upregulates expression of circCTDP1 and eEF1A2, both of which cooperatively promote PFKFB3 expression. TMAO induces glycolytic shift and VSMCs phenotypic switching by upregulating KLF4. Our study indicates that KLF4 mediates the link between glycolytic switch and VSMCs phenotypic transitions, suggesting that a previously unrecognized KLF4-eEF1A2/circCTDP1-PFKFB3 axis plays crucial roles in VSMCs phenotypic switching.
Project description:RNA sequencing of primary human aortic or arterial VSMCs after stimulation with transforming growth factor beta-1 (TGFβ1) revealed marked IL11 upregulation. In vitro, IL11 stimulation of VSMCs resulted in phenotypic switching by increased ECM production and migration/invasion. Neutralizing IL11 antibody treatment abolished phenotypic switching in VSMCs. IL11 plays an important and non-redundant role in VSMC phenotypic switching.
Project description:Smooth muscle cells (SMC) play significant roles in atherosclerosis via phenotypic switching, a pathological process in which SMC transdifferentiation into macrophage-like SMCs. Furthermore, during transdifferentiation, the SMCs' expression of PADI4 upregulating and SMC generated extracellular trap, a web-like structure, which plays key role in the development of atherosclerosis plaque. To reveal the function of SMC's generating ETs during atherosclerosis and to identify molecular targets for disease therapy, we combined SMC fate mapping and single-cell RNA sequencing of mouse atherosclerotic plaques.
Project description:BackgroundSmooth muscle cells (SMCs) play significant roles in atherosclerosis via phenotypic switching, a pathological process in which SMC dedifferentiation, migration, and transdifferentiation into other cell types. Yet how SMCs contribute to the pathophysiology of atherosclerosis remains elusive.MethodsTo reveal the trajectories of SMC transdifferentiation during atherosclerosis and to identify molecular targets for disease therapy, we combined SMC fate mapping and single-cell RNA sequencing of both mouse and human atherosclerotic plaques. We also performed cell biology experiments on isolated SMC-derived cells, conducted integrative human genomics, and used pharmacological studies targeting SMC-derived cells both in vivo and in vitro.ResultsWe found that SMCs transitioned to an intermediate cell state during atherosclerosis, which was also found in human atherosclerotic plaques of carotid and coronary arteries. SMC-derived intermediate cells, termed "SEM" cells (stem cell, endothelial cell, monocyte), were multipotent and could differentiate into macrophage-like and fibrochondrocyte-like cells, as well as return toward the SMC phenotype. Retinoic acid (RA) signaling was identified as a regulator of SMC to SEM cell transition, and RA signaling was dysregulated in symptomatic human atherosclerosis. Human genomics revealed enrichment of genome-wide association study signals for coronary artery disease in RA signaling target gene loci and correlation between coronary artery disease risk alleles and repressed expression of these genes. Activation of RA signaling by all-trans RA, an anticancer drug for acute promyelocytic leukemia, blocked SMC transition to SEM cells, reduced atherosclerotic burden, and promoted fibrous cap stability.ConclusionsIntegration of cell-specific fate mapping, single-cell genomics, and human genetics adds novel insights into the complexity of SMC biology and reveals regulatory pathways for therapeutic targeting of SMC transitions in atherosclerotic cardiovascular disease.
Project description:While our understanding of the single-cell gene expression patterns underlying the transformation of vascular cell types during the progression of atherosclerosis is rapidly improving, the clinical and pathophysiological relevance of these changes remain poorly understood. Single cell RNA sequencing (scRNAseq) data generated with SmartSeq2 (~8000 genes/cell) in nearly 19,000 single cells isolated during atherosclerosis progression in mice with human-like plasma lipoproteins and from humans with asymptomatic and symptomatic carotid plaques was clustered into multiple subtypes. For clinical and pathophysiological context, the advanced-stage and symptomatic subtype clusters were integrated with 135 tissue-specific (atherosclerotic aortic wall, mammary artery, liver, skeletal muscle, and visceral and subcutaneous, fat) gene-regulatory networks (GRNs) inferred from 600 coronary artery disease (CAD) patients in the Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task (STARNET) study.Advanced stages of atherosclerosis progression and symptomatic carotid plaques were largely characterized by three smooth-muscle cells (SMC), and three macrophage (MP) subtype clusters with extracellular matrix organization/osteogenic (SMC), and M1-type pro-inflammatory/Trem2-high lipid-associated (MP) phenotypes. Integrative analysis of these 6 clusters with STARNET revealed significant enrichments of three arterial wall GRNs: GRN33 (MP), GRN39 (SMC) and GRN122(MP) with major contributions to CAD heritability and strong associations with clinical scores of coronary atherosclerosis severity (SYNTAX/Duke scores). The presence and pathophysiological relevance of GRN39 was verified in five independent RNAseq datasets obtained from the human coronary and aortic artery, and primary SMCs and by targeting its top-key drivers, FRZB and ALCAM, in cultured human vascular SMCs.By identifying and integrating the most gene-rich single-cell subclusters of atherosclerosis to date with a CAD framework of GRNs, GRN39 was identified and independently validated as being critical for the transformation of contractile SMCs into an osteogenic phenotype promoting advanced-stage, symptomatic atherosclerosis.