Project description:Lenzites betulinus, known as gilled polypore belongs to Basidiomycota was isolated from fruiting body on broadleaf dead trees. It was found that the mycelia of white rot fungus Lenzites betulinus IUM 5468 produced ethanol from various sugars, including glucose, mannose, galactose, and cellobiose with a yield of 0.38, 0.26, 0.07, and 0.26 g of ethanol per gram of sugar consumed, respectively. This fungus relatively exhibited a good ethanol production from xylose at 0.26 g of ethanol per gram of sugar consumed. However, the ethanol conversion rate of arabinose was relatively low (at 0.07 g of ethanol per gram sugar). L. betulinus was capable of producing ethanol directly from rice straw and corn stalks at 0.22 g and 0.16 g of ethanol per gram of substrates, respectively, when this fungus was cultured in a basal medium containing 20 g/L rice straw or corn stalks. These results indicate that L. betulinus can produce ethanol efficiently from glucose, mannose, and cellobiose and produce ethanol very poorly from galactose and arabinose. Therefore, it is suggested that this fungus can ferment ethanol from various sugars and hydrolyze cellulosic materials to sugars and convert them to ethanol simultaneously.
Project description:To determine the wood degradation mechanism and its key genes of Lenzites gibbosa, we sequenced 15 transcriptomes of mycelial samples under woody environments at 3, 5, 7, and 11 d (D3, D5, D7, and D11) and non-woody environments (CK). All the transcripts were annotated as much as possible in eight databases to determine their function. The key genes and biological processes, relating to wood degradation, were predicted and screened. A total of 2069 differentially expressed genes (DEGs) were obtained in ten differential groups. Comparing wood with non-wood treatment conditions, the key genes were those participating in oxidation-reduction process, they were oxidoreductases and peroxidases genes, and their regulators genes; these genes mainly focused on the three biological processes of carbohydrate metabolism, lignin catabolism, and secondary metabolites biosynthesis, transport and catabolism. The mostly enriched subcategories in molecular function were oxidoreductase activity, peroxidase activity, and heme binding in GO annotation. One cellulose and hemicellulose degradation pathway and seven pathways related to lignin-derived aromatic compounds degradation or late lignin degradation were found. In conclusion, during the process of L. gibbosa growing on wood, gene expression at the transcriptional level indicated that lignin catabolism and hyphal growth were promoted, but the metabolism of carbon and carbohydrates including cellulose in lignocellulose in overall trend was inhibited to some extent. The results have important reference value for the study of degradation mechanism of wood white rot.