Project description:In order to determine the effect of ALA on geneexpression, P. aeruginosa PAO1 was incubated with and without 30 μM ALA under T3SS-inducing conditions (calcium depletion by addition of NTA to growth medium), followed by RNA extraction and microarray analysis.
Project description:This SuperSeries is composed of the following subset Series: GSE39013: Stability of miRNA in FFPE tumour samples exhibiting degraded mRNA [Cervix samples series 1] GSE39014: Stability of miRNA in FFPE tumour samples exhibiting degraded mRNA [Cervix samples series 2] GSE39015: Stability of miRNA in FFPE tumour samples exhibiting degraded mRNA [Cervix samples miRNA] GSE39016: Stability of miRNA in FFPE tumour samples exhibiting degraded mRNA [Bladder samples] GSE39066: Stability of miRNA in FFPE tumour samples exhibiting degraded mRNA [cell lines] Refer to individual Series
Project description:Understanding the impact of DNA methylation within different disease contexts often requires accurate assessment of these modifications in a genome-wide fashion. Frequently, patient-derived tissue stored in long-term hospital tissue banks have been preserved using formalin-fixation paraffin-embedding (FFPE). While these samples can comprise valuable resources for studying disease, the fixation process ultimately compromises the DNA’s integrity and leads to degradation. Degraded DNA can complicate CpG methylome profiling using traditional techniques, particularly when performing methylation sensitive restriction enzyme sequencing (MRE-seq), yielding high backgrounds and resulting in lowered library complexity. Here, we provide results using our new MRE-seq protocol (Capture MRE-seq), tailored to preserving unmethylated CpG information when using samples with highly degraded DNA. The results using Capture MRE-seq correlate well (0.92) with traditional MRE-seq calls when profiling non-degraded samples, and can recover unmethylated regions in highly degraded samples when traditional MRE-seq fails, which we validate using bisulfite sequencing-based data (WGBS) as well as methylated DNA immunoprecipitation followed by sequencing (MeDIP-seq).
Project description:Transcriptome analysis of partially degraded and fragmented RNA samples from mus musculus gut Global gene expression profiling has shown the gut transcripts changes through administration of aspirin while probiotics strain administration beforehand attenuates the effect more than teprenone.
Project description:P. aeruginosa PAO1 PA2663-UW expression in biofilm cells relative to P. aeruginosa PAO1 WT-UW expression in biofilm cells. All samples cultured in LB with glass wool. Keywords: Mutation
Project description:Pseudomonas aeruginosa PAO1 contacted with and without poplar roots gene expression Poplar contacted with and without PAO1 gene expression. All samples cultured in 1 x hrp + 0.25 % sucrose Keywords: Contact with different species
Project description:P. aeruginosa PAO1 wild type and PA2663 mutant strains expression in biofilm cells relative to P. aeruginosa PAO1 wild type strain expression in biofilm cells. All samples cultured in LB with glass wool Keywords: Biofilm
Project description:b-Oxidative enzymes for fatty acid degradation (Fad) of long-chain fatty acid (LCFA), a component of lung surfactant phosphatidylcholine, are induced in vivo during lung infection in cystic fibrosis patients, which could contribute to nutrient acquisition and pathogenesis of Pseudomonas aeruginosa. In addition, fatty acid biosynthesis (Fab) is essential for the syntheses of two virulence controlling acylated-homoserine-lactone molecules in this organism. We mapped the promoter regions of the fadBA5-operon (PA3014 and PA3013) and a fadE homologue (PA2815) involved in Fad and the fabAB-operon involved in Fab. Focusing on the transposon mutagenesis of strain PAO1 carrying the PfadBA5-lacZ fusion, we identified a regulator for the fadBA5-operon to be PsrA (PA3006). Transcriptome analysis of the DpsrA mutant indicates its importance in regulating b-oxidative enzymes, which confirms a previous proteomic study. We further showed that induction of the fadBA-operon responds to LCFA signals, and this induction requires the presence of PsrA, suggesting that PsrA binds to LCFA to derepress fadBA5. Electrophoresis mobility shift assay indicate specific binding of PsrA to the fadBA5-promoter region. This binding is disrupted by specific LCFA (C18:1D9, C16:0, and to a lesser extent C14:0), but not by the first intermediate of b-oxidation, acyl-CoA. We proposed that PsrA is a Fad-regulator that binds and responds to LCFA signals in Pseudomonas aeruginosa. Experiment Overall Design: PAO1 and PAO1-psrA::Tn cultures grown in LB and cells were harvested at mid-log phase. Total RNA was isolated from both samples, and used for cDNA synthesis. And then, the cDNA for both samples were fragmented and labeled. The cDNA of PAO1 was used for 2 GeneChips, and PAO1-psrA::Tn cDNA was used for three GeneChips.