Project description:Bioenergy sorghum accumulates 75% of shoot biomass in stem internodes. Grass stem internodes are formed during vegetative growth and elongate in response to developmental and environmental signals. To identify genes and molecular mechanisms that modulate the extent of internode growth, we conducted microscopic and transcriptomic analysis of four successive sub-apical vegetative internodes representing different stages of internode development of the bioenergy sorghum genotype R.07020.
Project description:Bioenergy sorghum is a low-input, drought-resilient, deep-rooting annual crop that has high biomass yield potential enabling the sustainable production of biofuels, biopower, and bioproducts. Bioenergy sorghum’s 4-5 m stems account for ~80% of the harvested biomass. Stems accumulate high levels of sucrose that could be used to synthesize bioethanol and useful biopolymers if information about stem cell-type gene expression and regulation was available to enable engineering. To obtain this information, Laser Capture Microdissection (LCM) was used to isolate and collect transcriptome profiles from five major cell types that are present in stems of the sweet sorghum Wray. Transcriptome analysis identified genes with cell-type specific and cell-preferred expression patterns that reflect the distinct metabolic, transport, and regulatory functions of each cell type. Analysis of cell-type specific gene regulatory networks (GRNs) revealed that unique TF families contribute to distinct regulatory landscapes, where regulation is organized through various modes and identifiable network motifs. Cell-specific transcriptome data was combined with a stem developmental transcriptome dataset to identify the GRN that differentially activates the secondary cell wall (SCW) formation in stem xylem sclerenchyma and epidermal cells. The cell-type transcriptomic dataset provides a valuable source of information about the function of sorghum stem cell types and GRNs that will enable the engineering of bioenergy sorghum stems.
Project description:Salt stress has become one of the main abiotic stress factors restricting agricultural production worldwide. Sweet sorghum is an important salt and drought tolerant feed and energy crop. Its salt tolerance mechanism has not been widely studied. With the development of transcriptome sequencing technology, it is possible to study the molecular mechanism of sweet sorghum salt tolerance. The purpose of this study was to further reveal the potential salt-tolerant molecular mechanisms of sweet sorghum through high-throughput sequencing analysis of the transcriptome. Finally, through high-throughput sequencing, we read approximately 54.4G of raw base and 53.7G of clean base in total, and used FastQC to assign a quality score (Q) to each base in the read using a similar phred algorithm, Analysis shows that the data is highly credible. We conclude that RNA-based transcriptome characterization will accelerate the study of genetics and molecular biology of sweet sorghum salt tolerance mechanisms and provide a framework for this.
Project description:Sweet sorghum has emerged as a promising source of bioenergy mainly due to its high biomass and high soluble sugar yield in stems. Studies have shown that loss-of-function Dry locus alleles have been selected during sweet sorghum domestication, and decapitation can further boost sugar accumulation in sweet sorghum, indicating that the potential for improving sugar yields is yet to be fully realized. To maximize sugar accumulation, it is essential to gain a better understanding of the mechanism underlying the massive accumulation of soluble sugars in sweet sorghum stems in addition to the Dry locus. We performed a transcriptomic analysis upon decapitation of near-isogenic lines for mutant (d, juicy stems, and green leaf midrib) and functional (D, dry stems and white leaf midrib) alleles at the Dry locus. Our analysis revealed that decapitation suppressed photosynthesis in leaves, but accelerated starch metabolic processes in stems. SbbHLH093 negatively correlates with sugar levels supported by genotypes (DD vs. dd), treatments (control vs. decapitation), and developmental stage post anthesis (3d vs.10d). D locus gene SbNAC074A and other programmed cell death-related genes were downregulated by decapitation, while sugar transporter-encoding gene SbSWEET1A was induced. Both SbSWEET1A and Invertase 5 were detected in phloem companion cells by RNA in situ assay. Loss of the SbbHLH093 homolog, AtbHLH093, in Arabidopsis led to a sugar accumulation increase. This study provides new insights into sugar accumulation enhancement in bioenergy crops, which can be potentially achieved by reducing reproductive sink strength and enhancing phloem unloading.
Project description:Four small RNA libraries from two contrasting sweet sorghum genotypes were sequenced. In this study, One hundred and ninety-five conserved miRNAs belonging to 56 families and 25 putative novel miRNAs from 28 precursors were identified, among which 38 conserved and 24 novel miRNAs were differentially expressed under Cd stress and/or between H18 and L69. Two groups of them: miR169p/q-nov_23 and miR408 were further focused through the coexpression analysis and might be involved in Cd transport, cytoskeleton activity and cell wall construction by regulating their targets. This study presents new insights into the regulatory roles of miRNAs in Cd accumulation and tolerance in sweet sorghum and will help to develop high-Cd accumulation or high Cd-resistant germplasm of sweet sorghum through molecular breeding and/or genetic engineering approaches.
Project description:We analyzed lncRNAs from sorghum leaves under water control treatment using high-throughput sequencing technology and bioinformatic approaches to explore the genome-wide quantity of lncRNAs and their potential function in the regulation of drought responses.
2023-09-25 | GSE232788 | GEO
Project description:Assessing genotyping errors in mammalian museum study skins using high-throughput genotyping-by-sequencing
Project description:Currently, Baijiu production is performed with different varieties of sorghum that vary considerably in price. Although studies have shown that sorghum varieties affect Baijiu quality, the specific effects of sorghum varieties on Baijiu fermentation have not been thoroughly studied. By using multiple-omics analyses, we compared the fermentation process and final quality of Baijiu brewed from four representative sorghum varieties and identified the involved microbial mechanisms. In addition to providing insight into Baijiu fermentation mechanisms, the results can guide the selection of suitable raw materials for production and future breeding of high quality varieties.