Project description:The Antibiotic Resistant Sepsis Pathogens Framework Initiative aims to develop a framework dataset of 5 sepsis pathogens (5 strains each) using an integrated application of genomic, transcriptomic, metabolomic and proteomic technologies. The pathogens included in this initiative are: Escherichia coli, Klebsiella pneumoniae complex, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae. This submission pertains to Streptococcus pneumoniae strains 4496, 947, 4559, 180-2 and 180-15.
Project description:The Antibiotic Resistant Sepsis Pathogens Framework Initiative aims to develop a framework dataset of 5 sepsis pathogens (5 strains each) using an integrated application of genomic, transcriptomic, metabolomic and proteomic technologies. The pathogens included in this initiative are: Escherichia coli, Klebsiella pneumoniae complex, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae. This submission pertains to strain 947.
Project description:The Antibiotic Resistant Sepsis Pathogens Framework Initiative aims to develop a framework dataset of 5 sepsis pathogens (5 strains each) using an integrated application of genomic, transcriptomic, metabolomic and proteomic technologies. The pathogens included in this initiative are: Escherichia coli, Klebsiella pneumoniae complex, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae. This submission pertains to strain 4496.
Project description:The Antibiotic Resistant Sepsis Pathogens Framework Initiative aims to develop a framework dataset of 5 sepsis pathogens (5 strains each) using an integrated application of genomic, transcriptomic, metabolomic and proteomic technologies. The pathogens included in this initiative are: Escherichia coli, Klebsiella pneumoniae complex, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae. This submission pertains to strain 4559.
Project description:TIGR4 and R6 bacterial strains of Streptococcus pneumoniae treated and not treated with the iron chelator deferoxamine mesylate (DFO)
Project description:Treatment of pneumococcal infections is limited by antibiotic resistance and exacerbation of disease by bacterial lysis releasing pneumolysin toxin and other inflammatory factors. We identified a novel peptide in the Klebsiella pneumoniae secretome, which enters Streptococcus pneumoniae via its AmiA-AliA/AliB permease. Subsequent downregulation of genes for amino acid biosynthesis and peptide uptake was associated with reduction of pneumococcal growth in defined medium and human cerebrospinal fluid, irregular cell shape, decreased chain length and decreased genetic transformation. The bacteriostatic effect was specific to S. pneumoniae and Streptococcus pseudopneumoniae with no effect on Streptococcus mitis, Haemophilus influenzae, Staphylococcus aureus or K. pneumoniae. Peptide sequence and length were crucial to growth suppression. The peptide reduced pneumococcal adherence to primary human airway epithelial cell cultures and colonization of rat nasopharynx, without toxicity. We also analysed the effect of peptide on the proteome of S. pneumoniae. We found alteration of the proteome by the peptide with some proteins turned on or off in line with the transcriptomic changes. We therefore identified a peptide with potential as a therapeutic for pneumococcal diseases suppressing growth of multiple clinical isolates, including antibiotic resistant strains, while avoiding bacterial lysis and dysbiosis.
Project description:The Antibiotic Resistant Sepsis Pathogens Framework Initiative aims to develop a framework dataset of 5 sepsis pathogens (5 strains each) using an integrated application of genomic, transcriptomic, metabolomic and proteomic technologies. The pathogens included in this initiative are: Escherichia coli, Klebsiella pneumoniae complex, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae. This submission pertains to strain 180-15.
Project description:The Antibiotic Resistant Sepsis Pathogens Framework Initiative aims to develop a framework dataset of 5 sepsis pathogens (5 strains each) using an integrated application of genomic, transcriptomic, metabolomic and proteomic technologies. The pathogens included in this initiative are: Escherichia coli, Klebsiella pneumoniae complex, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae. This submission pertains to strain 180-2.
Project description:The Antibiotic Resistant Sepsis Pathogens Framework Initiative aims to develop a framework dataset of 5 sepsis pathogens (Escherichia coli, Klebsiella pneumoniae complex, Staphylococcus aureus, Streptococcus pneumoniae and Streptococcus pyogenes, 5 strains each) using an integrated application of genomic, transcriptomic, metabolomic and proteomic technologies. This submission contains the results from five Streptococcus pneumoniae strains (4496, 947, 4559, 180-2, 180-15) grown under three conditions: RPMI supplemented with glucose, RPMI supplemented with galactose, or pooled human sera. Six replicates of each condition were subjected to shotgun proteomics and label-free MS1-based quantitation.
Project description:Extracellular vesicles (EVs) have recently garnered attention for their participation in host-microbe interactions in Streptococcus pneumoniae infections. However, the effect of pEVs on the disruption of alveolar epithelial barrier remain poorly understood. Our studies focus on EVs produced by Streptococcus pneumoniae (pEVs), and reveal that pEVs are internalized by alveolar epithelial cells. In vitro, pEVs induce autophagy activation in a dosage-dependent manner and decrease the alveolar epithelial barrier’s trans-epithelium electrical resistance (TEER). In addition, pEV-containing bacterial peotein serine/threonine-protein kinase StkP may act as an activator for Streptococcus pneumoniae-induced autophagy activation. When administered systemically in mice, Streptococcus pneumoniae wild type strain induced acute lung injury, the deletion of stkP deletion strain attenuated this injury. Taken together, pEVs cargos emerge as critical contributors to tissue damage in mammalian hosts.