ABSTRACT: Metagenome-Assembled Genomes of Twelve Bacterial Species from Biofouled Plastic Fabrics Harbor Multiple Genes for Adaptation and Degradation of Hydrocarbons
Project description:The study aimed to explore the potential of bacterial biodegradation as a solution to the global problem of plastic pollution, specifically targeting polyethylene (PE), one of the most common types of plastic. The goals of the study were to isolate a bacterial strain capable of breaking down PE, identify the key enzymes responsible for the degradation process, and understand the metabolic pathways involved. By investigating these aspects, researchers sought to gain critical insights that could be used to optimize plastic degradation conditions and inform the development of artificial microbial communities for effective bioremediation strategies. This research has significant relevance, as it addresses the pressing need for innovative and sustainable approaches to tackle the ever-growing issue of plastic waste and its impact on the environment.
Project description:The study aimed to explore the potential of bacterial biodegradation as a solution to the global problem of plastic pollution, specifically targeting polyethylene (PE), one of the most common types of plastic. The goals of the study were to isolate a bacterial strain capable of breaking down PE, identify the key enzymes responsible for the degradation process, and understand the metabolic pathways involved.
Project description:To characterize the taxonomic and functional diversity of biofilms on plastics in marine environments, plastic pellets (PE and PS, ø 3mm) and wooden pellets (as organic control) were incubated at three stations: at the Baltic Sea coast in Heiligendamm (coast), in a dead branch of the river Warnow in Warnemünde (inlet), and in the Warnow estuary (estuary). After two weeks of incubation, all pellets were frozen for subsequent metagenome sequencing and metaproteomic analysis. Biofilm communities in the samples were compared on multiple levels: a) between the two plastic materials, b) between the individual incubation sites, and c) between the plastic materials and the wooden control. Using a semiquantitative approach, we established metaproteome profiles, which reflect the dominant taxonomic groups as well as abundant metabolic functions in the respective samples.